
S p e c i f i c a t i o n a n d M a i n t e n a n c e L e a d :

Java Rule Engine API™

JSR-94

T e c h n i c a l C o m m e n t s :

J a v a R u l e E n g i n e A P I S p e c i f i c a t i o n (" S p e c i f i c a t i o n ")

V e r s i o n : 1 . 0

R e l e a s e : S e p t e m b e r 1 5 , 2 0 0 3
S t a t u s : J C P F i n a l R e v i e w

j s r - 9 4 - c o m m e n t s @ j c p . o r g

A l e x T o u s s a i n t , B E A S y s t e m s , I n c .

Java Community Process

http://java.sun.com/jcp/

BEA SYSTEMS, INC. ("BEA") IS WILLING TO LICENSE THIS SPECIFICATION
TO YOU ONLY UPON THE CONDITION THAT YOU ACCEPT ALL OF THE
TERMS CONTAINED IN THIS LICENSE AGREEMENT ("AGREEMENT").
PLEASE READ THE TERMS AND CONDITIONS OF THIS AGREEMENT
CAREFULLY. BY DOWNLOADING THIS SPECIFICATION, YOU ACCEPT
THE TERMS AND CONDITIONS OF THE AGREEMENT. IF YOU ARE NOT
WILLING TO BE BOUND BY IT, SELECT THE "DECLINE" BUTTON AT THE
BOTTOM OF THIS PAGE AND THE DOWNLOADING PROCESS WILL NOT
CONTINUE.

 _______________ for JavaTM Specification ("Specification")

Version: _______________

Status: FCS

Release: [insert date]

Copyright 2002, 2003 BEA Systems, Inc.

2315 North First Street, San Jose CA, 95131

All rights reserved.

NOTICE; LIMITED LICENSE GRANTS

1. License for Evaluation Purposes. BEA hereby grants you a fully-paid,
non-exclusive, non-transferable, worldwide, limited license (without the right to
sublicense), under BEA's applicable intellectual property rights to view, download, use
and reproduce the Specification only for the purpose of internal evaluation, which shall
be understood to include developing applications intended to run on an
implementation of the Specification provided that such applications do not themselves
implement any portion(s) of the Specification.

2. License for the Distribution of Compliant Implementations. BEA also grants you a
perpetual, non-exclusive, non-transferable, worldwide, fully paid-up, royalty free,
limited license (without the right to sublicense) under any applicable copyrights or,
subject to the provisions of subsection 3 below, patent rights it may have covering the
Specification to create and/or distribute an implementation of the Specification that:
(a) fully implements the Specification including all its required interfaces and
functionality, and (b) passes the Technology Compatibility Kit for such Specification
("Compliant Implementation").
Java Rule Engine API ii

3. Reciprocity Concerning Patent Licenses.

a. With respect to any patent claims covered by the license granted under subparagraph
2 above that would be infringed by all technically feasible implementations of the
Specification, such license is conditioned upon your offering on fair, reasonable and
non-discriminatory terms, to any party seeking it from You, a perpetual,
non-exclusive, non-transferable, worldwide license under Your patent rights which are
or would be infringed by all technically feasible implementations of the Specification
to develop, distribute and use a Compliant Implementation.

b With respect to any patent claims owned by BEA and covered by the license granted
under subparagraph 2, whether or not their infringement can be avoided in a
technically feasible manner when implementing the Specification, such license shall
terminate with respect to such claims if You initiate a claim against BEA that it has, in
the course of performing its responsibilities as the Specification Lead, induced any
other entity to infringe Your patent rights.

c Also with respect to any patent claims owned by BEA and covered by the license
granted under subparagraph, where the infringement of such claims can be avoided in
a technically feasible manner when implementing the Specification such license, with
respect to such claims, shall terminate if You initiate a claim against BEA that its
making, having made, using, offering to sell, selling or importing a Compliant
Implementation infringes Your patent rights.

4. Definitions. For the purposes of this Agreement: "Technology Compatibility Kit" or
"TCK" shall mean the test suite and accompanying documentation provided by BEA
which corresponds to the particular version of the Specification being tested.

BEA shall have the right to terminate this Agreement immediately notice if you fail to
comply with any material provision of or act outside the scope of the licenses granted
above.

TRADEMARKS
iii Java Rule Engine API

No right, title, or interest in or to any trademarks, service marks, or trade names of BEA
or BEA's licensors is granted hereunder. Java is a registered trademark of Sun
Microsystems, Inc. in the United States and other countries.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS". BEA MAKES NO
REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
NON-INFRINGEMENT (INCLUDING AS A CONSEQUENCE OF ANY
PRACTICE OR IMPLEMENTATION OF THE SPECIFICATION), OR THAT THE
CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR
TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO
THE INFORMATION THEREIN; THESE CHANGES WILL BE INCORPORATED
INTO NEW VERSIONS OF THE SPECIFICATION, IF ANY. BEA MAY MAKE
IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE
PROGRAM(S) DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use
of such changes in the Specification will be governed by the then-current license for
the applicable version of the Specification.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL BEA OR
ITS BEAS BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT
LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL,
INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES,
HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF OR RELATED TO ANY FURNISHING, PRACTICING,
MODIFYING OR ANY USE OF THE SPECIFICATION, EVEN IF BEA AND/OR
ITS BEAS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend BEA and its licensors from any claims
arising or resulting from: (i) your use of the Specification; (ii) the use or distribution
of your application or applet written to and/or Your implementation of the
Specification; and/or (iii) any claims that later versions or releases of any Specification
furnished to you are incompatible with the Specification provided to you under this
license.
Java Rule Engine API iv

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S.
Government or by a U.S. Government prime contractor or subcontractor (at any tier),
then the Government's rights in the Software and accompanying documentation shall
be only as set forth in this license; this is in accordance with 48 C.F.R. 227.7201
through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48
C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT

You may wish to report any ambiguities, inconsistencies or inaccuracies you may find
in connection with your use of the Specification ("Feedback"). To the extent that you
provide BEA with any Feedback, you hereby: (i) agree that such Feedback is provided
on a non-proprietary and non-confidential basis, and (ii) grant BEA a perpetual,
non-exclusive, worldwide, fully paid-up, irrevocable copyright license, with the right
to sublicense through multiple levels of sublicensees, to incorporate, disclose, and use
without limitation the Feedback for any purpose related to the Specification and future
versions, implementations, and test suites thereof.
v Java Rule Engine API

Contents

1 Expert Group Members .1
2 Target Audience .2
3 Scope .2
4 Compliance .3
5 References .4
6 Definitions .5

6.1 Rule Engine ...5
6.2 Rule..6
6.3 Rule Execution Set ..6
6.4 Rule Session ..7
6.5 Stateful Rule Session...7
6.6 Stateless Rule Session ...7

7 Document Conventions .7
7.1 Key Words...7
7.2 Typography..8

8 Acronyms and Abbreviations .8
9 Introduction. .8

9.1 Rationale..9
9.2 Goals..9

10 Architecture. .10
10.1 Runtime API..11
10.2 Administrator API ...17

11 Use Cases .22
11.1 Usage from J2SE ...22
Java Rule Engine API vi

11.2 Scenario: Rule Administration ... 24
11.3 Scenario: Stateless Rule Session .. 25
11.4 Scenario: Stateful Rule Session.. 26

12 Roles and Responsibilities . 27
12.1 Rule Engine Vendor ... 27
12.2 Rule Execution Set Administrator .. 28
12.3 Rule Runtime Client ... 28

13 Deployment Scenarios . 28
13.1 Scenario: J2SE.. 28

14 Error Logging and Tracing. 29
15 Security . 29

15.1 Scenario: J2SE.. 30
16 Exceptions. 30

16.1 Rule Execution Exceptions... 30
16.2 Configuration Exception... 32
16.3 Administration Exceptions ... 32

17 Required APIs . 33
18 Change History . 33
19 Acknowledgments. 34
vii Java Rule Engine API

Java Rule Engine API viii

Figures

Figure 1: RuleServiceProvider Class Diagram12
Figure 2: RuleRuntime Class Diagram ..12
Figure 3: RuleExecutionSetMetadata Class Diagram13
Figure 4: Stateful and Stateless RuleSession Class Diagram14
Figure 5: ObjectFilter Class Diagram ..15
Figure 6: Handle Class Diagram ..17
Figure 7: RuleAdministrator Class Diagram18
Figure 8: RuleExecutionSetProvider Class Diagram19
Figure 9: LocalRuleExecutionSetProvider Class Diagram20
Figure 10: Rule Class Diagram ..21
Figure 11: RuleExecutionSet Class Diagram21
Figure 12: Runtime Client Exceptions Class Diagram31
Figure 13: Administration Exceptions Class Diagram32

Expert Group Members
Java Rule Engine API

1 Expert Group Members

Company Representative

ATG Inc. Allan Scott

BEA Systems Inc. Alex Toussaint

Fair Isaac Inc. Johan Majoor

Fujitsu Ltd. Frank McCabe

IBM Inc. Rainer Kerth

ILOG SA. Changhai Ke, Daniel Selman

Oracle Inc. Mark Hornick

Sandia National Labs Ernest Friedman-Hill

Silverstream Inc. Gregg McMullin

Unisys Inc. Sridhar Iyengar
Java Rule Engine API 1

Java Rule Engine API
2 Target Audience

The specification is aimed at software engineers using the API to implement
rules-based applications and rule engine vendors building rule-engine
implementations compliant with the specification.

3 Scope

The scope of the specification is to define a lightweight-programming interface that
constitutes a standard API for acquiring and using a rule engine.

The scope of the specification specifically excludes defining a standard rule
description language to describe the rules within a rule execution set.

The specification targets the J2SE platform.

The specification is compatible with JDK1.3.x (with optional packages) as well as
JDK 1.4.x (unchanged)

The following items are in the scope of the specification:

� Τhe restrictions and limits imposed by a compliant implementation.

� Τhe mechanisms to acquire interfaces to a compliant implementation.

� Τhe interfaces through which rule execution sets are invoked by runtime clients
of a complaint implementation.

� Τhe interfaces through which rule execution sets are loaded from external
resources and registered for use by runtime clients of a compliant
implementation.

The following items are outside the scope of the specification:

� Τhe binary representation of rules and rule execution sets.

� Τhe syntax and file-formats of rules and rule execution sets.
2 Java Rule Engine API

Compliance
� Τhe semantics of interpreting rules and rule execution sets.

� Τhe mechanism by which rules and rule execution sets are transformed for use
by a rule engine.

� All minimal system requirements required to support a compliant
implementation.

4 Compliance

Compliance is of interest to the following audiences:

� Those designing, implementing, or maintaining JSR-94 implementations.

� Governmental or commercial entities wishing to procure JSR-94
implementations.

� Testing organizations wishing to provide a JSR-94 compliance test suite.

� Programmers wishing to port code from one complaint implementation to
another.

� Educators wishing to teach JSR-94 compliant rule engines.

� Authors wanting to write about JSR-94 compliant rule engines.

Clients of a compliant JSR-94 implementation should understand that they will only
get semantic interoperability between rule engines that implement semantically
equivalent rule execution set evaluation cycles. Compile time compatibility and binary
compatibility do not necessarily imply runtime compatibility of compliant
implementations.

The text in this specification that specifies requirements is considered normative. All
other text in this specification is informative, that is, for information purposes only.
Normative text is further broken into required and conditional categories.
Conditionally normative text specifies requirements for a feature such that if that
feature is provided, its syntax and semantics must be exactly as specified.
Java Rule Engine API 3

Java Rule Engine API
If any requirement of the specification is violated, the behavior is undefined.
Undefined behavior is otherwise indicated in the specification by the words undefined
behavior or by the omission of any explicit definition of behavior. There is no
difference in emphasis among these three; they all describe behavior that is undefined.

5 References

RuleML: http://www.dfki.uni-kl.de/ruleml/

Java Specification Requests: http://www.jcp.org/

� JSR-41: A Simple Assertion Facility

� JSR-47: Logging API Specification

� JSR-73: Data Mining API

�RETE: A fast algorithm for the many pattern/many object pattern match
problem,� Artificial Intelligence, Volume 19, Number 1, 1982, C.L. Forgy

Provides useful background information about the RETE algorithm, which is at
the heart of several rule engine implementations.

Business Rules for Electronic Commerce: Project at IBM T.J. Watson Research

Provides useful background information.

Jess, The Java Expert System Shell

JESS is a rule engine and scripting environment written entirely in Sun�s Java
language by Ernest Friedman-Hill at Sandia National Laboratories in Livermore,
CA. JESS can be licensed free of charge for academic use.

RFC 2119, Key Words for use in RFCs to Indicate Requirement Levels

http://www.ietf.org/rfc/rfc2119.txt

Java Logging API

http://java.sun.com/j2se/1.4/docs/guide/util/logging/overview.html
4 Java Rule Engine API

Definitions
Java Security Architecture

http://java.sun.com/security/

JDK 1.4 Security

http://java.sun.com/j2se/1.4/docs/guide/security/index.html

6 Definitions

6.1 Rule Engine

The key underlying technology is the rule engine. A rule engine may be viewed as a
sophisticated if/then statement interpreter. The if/then statements that are interpreted
are called rules. The if portions of rules contain conditions such as
shoppingCart.totalAmount > $100. The then portions of rules contain actions
such as recommendDiscount(5%). The inputs to a rule engine are a rule execution set
and some data objects. The outputs from a rule engine are determined by the inputs and
may include the original input data objects with possible modifications, new data
objects, and side effects such as sendMail('Thank you for shopping').

There are many differences between rule engines, and the term is used extremely
loosely across the software industry. Typically, common features:

� Promote declarative programming by externalizing business or application logic.

� Include a documented file-format or tools to author rules and rule execution sets
external to the application.

� Act upon input objects to produce output objects. Input objects are often referred
to as facts and are a representation of the state of the application domain. Output
objects are often referred to as conclusions or inferences and are grounded by the
application into the application domain.

� The rule engine may execute actions directly, which affect the application
domain, input objects, the execution cycle, rules, or the rule engine.

� The rule engine may merely create output objects, delegating the interpretation
and execution of the output objects to the caller.
Java Rule Engine API 5

Java Rule Engine API
One of the most common classes of rule engines is the forward-chaining rule engine.
Forward-chaining rule engines implement an execution cycle that allows the action of
one rule to cause the condition of other rules to become met. In this way, a cascade of
rules may become activated and each rule action executed. Forward-chaining rule
engines are suitable for problems that require drawing higher-level conclusions from
simple input facts. Forward-chaining rule engines are often implemented using a
variant of the RETE-algorithm.

While the specification recognizes the importance of forward-chaining rule engines, it
does not mandate an execution cycle or the semantics of executing a rule execution set.
The specification defines a lightweight API that could be implemented by a wide
variety of rule engines. It is expected, and desired, that non forward-chaining rule
engines will also implement the APIs of this specification.

6.2 Rule

A rule is typically composed of two parts: a condition and an action. When the
condition is met, the action is executed. This specification does not address the
structure of rules, as there are considerable differences between vendors, and
differences often relate to the requirements of different types of rule engines and
execution algorithms. For the purposes of this specification, a rule merely exposes
basic metadata, such as a name and a description.

6.3 Rule Execution Set

A rule execution set is a collection of rules. The specification does not define the
structure of a rule execution set other than to say that a rule execution set is composed
of a collection of rules. Additionally, a rule execution set also exposes basic metadata
such as name and description.
6 Java Rule Engine API

Document Conventions
6.4 Rule Session

A rule session is a runtime connection between a client and a rule engine. A rule
session is associated with a single rule execution set. A rule session may consume rule
engine resources and must be explicitly released when the client no longer requires the
rule session.

6.5 Stateful Rule Session

A stateful rule session allows a client to have a prolonged interaction with a rule
execution set. Input objects can be progressively added to the session and output
objects can be queried repeatedly.

6.6 Stateless Rule Session

A stateless rule session provides a high-performance and simple API that executes a
rule execution set with a List of input objects. Stateless rule session methods are
idempotent.

7 Document Conventions

7.1 Key Words

The key words �MUST�, �MUST NOT�, �REQUIRED�, �SHALL�, �SHALL NOT�,
�SHOULD�, �SHOULD NOT�, �RECOMMENDED�, �MAY�, and �OPTIONAL� in this document
are to be interpreted as described in [RFC 2119].
Java Rule Engine API 7

Java Rule Engine API
7.2 Typography

Code Font:

RuleRuntime ruleRuntime = RuleServiceProvider.getRuleRuntime();

Code Notation Font:

// this is a code notation for the Foo Class.

Inline class, interface, method, or package references:

The Foo class, defined in the org.bar package defines the isComplete method and
implements the Bar interface.

8 Acronyms and Abbreviations

9 Introduction

The specification defines a Java API for rule engines. The API prescribes a set of
fundamental rule engine operations. The set of operations is based on the assumption
that most clients need to be able to execute a basic multiple-step rule engine cycle that
consists of parsing rules, adding objects to an engine, firing rules, and getting resultant
objects from the engine.

This specification targets the J2SE platform.

Acronym Abbreviation

J2SE Java 2 Standard Edition

JCA Java Connector Architecture
8 Java Rule Engine API

Introduction
A primary input to a rule engine is a collection of rules called a rule execution set. The
rules in an execution set are expressed in a rule language. This specification does not
prescribe a rule language but is focused on facilitating runtime interoperability
between rule engines.

The specification strives to be inclusive across rule engines and does not mandate the
semantics of the rule execution cycle or a rule language. The specification errs on the
side of simplicity and generality over mandating specific implementation, deployment,
or management methodologies. The specification supports rule engines that are
running wholly within the caller�s JVM as well as rule engines that are proxy rule
engine requests to remote JVMs.

The authors acknowledge that the generality of the specification comes at the price of
semantic interoperability of implementations and expects that future revisions of the
specification will impose additional semantic requirements on different classes of rule
engines. This approach mirrors that of the JCA specification, where compile time
compatibility does not necessarily infer similar runtime behavior between vendor
Resource Adapter implementations.

The authors welcome suggestions from the JCP community and the Java community
at large on these issues.

9.1 Rationale

This specification addresses the community need to reduce the cost associated with
incorporating business logic within applications and the community need to reduce the
cost associated with implementing platform-level business logic tools and services.

Dissimilar vendor-specific API specifications exist. However, the differences between
these specifications are significant enough to cause costly difficulties for application
builders, platform vendors, and software architects.

9.2 Goals

The goals of the specification are to:

� Facilitate adding rule engine technology to Java applications.

� Increase communication and standardization between rule engine vendors.
Java Rule Engine API 9

Java Rule Engine API
� Encourage the creation of a market for third-party application and tool vendors
through a standard rule engine API.

� Facilitate embedding rule engine technology in other JSRs to support declarative
programming models.

� Promote independence of client code from J2SE environment.

� Make Java applications more portable from one rule engine vendor to another.

� Provide implementation patterns for rules-based applications for the J2SE
platform.

� Support rule engine vendors by offering a harmonized API that meets the needs
of their existing customers and is easily implemented.

10 Architecture

The interfaces and classes defined by the specification are in the javax.rules and
javax.rules.admin packages. The javax.rules package contains classes and
interfaces that are aimed at runtime clients of the rule engine. The runtime client API
exposes methods to acquire a rule session for a registered rule execution set and
interact with the rule session. The administrator API exposes methods to load an
execution set from these external resources: URI, InputStream, XML Element,
binary abstract syntax tree, or Reader. The administrator API also provides methods
to register and unregister rule execution sets. Only registered rule execution sets are
accessible through the runtime client API.

A packaging separation between the runtime client API and the administrator API was
made to reinforce the distinction between executing a rule execution set that has been
previously loaded and registered into the runtime environment by an administrator,
and the dynamic loading and execution of external resources. The later actions can
only be performed using the classes and interfaces in the javax.rules.admin
package.

The distinction between the runtime and admin packages allows a more fine grained
control of the user population; for example, some users may be allowed to execute
rules but not to administer them.
10 Java Rule Engine API

Architecture
10.1 Runtime API

The runtime API for the specification is defined in the javax.rules package. The
high-level capabilities of the runtime API are:

� Acquire an instance of a rule engine vendors RuleServiceProvider interface
through the RuleServiceProviderManager class.

� Acquire an instance of the RuleRuntime interface through the
RuleServiceProvider class.

� Create a RuleSession through the RuleRuntime.

� Get a java.util.List of registered URIs.

� Interact with an acquired RuleSession.

� Retrieve metadata for a RuleSession through the
RuleExecutionSetMetadata interface.

� Provide an ObjectFilter interface to filter the results of executing a
RuleExecutionSet.

� Use Handle instances to access objects added to a StatefulRuleSession.

RuleServiceProviderManager

The RuleServiceProviderManager class allows J2SE runtime clients to retrieve a
RuleServiceProvider implementation for a given rule engine vendor. The
RuleServiceProviderManager class provides methods to allow a rule engine
vendor�s RuleServiceProvider implementation to be registered with a URL in a
manner similar to the JDBC classes Driver and DriverManager.

RuleServiceProvider implementers should make efforts to ensure uniqueness of
their registration URL. The recommended convention is to use a name within the
Internet domain namespace (or Java package namespace) of the
RuleServiceProvider implementer.

For example:

Class.forName("org.jcp.jsr94.ri.RuleServiceProvider");
Java Rule Engine API 11

Java Rule Engine API
RuleServiceProvider serviceProvider =
RuleServiceProviderManager.getRuleServiceProvider (
"org.jcp.jsr94.ri.RuleServiceProvider");

RuleServiceProvider

Figure 1 RuleServiceProvider Class Diagram

The RuleServiceProvider class implements a single point of access to the
RuleRuntime and RuleAdministrator interfaces when running in the J2SE
environment. It must insulate client code from the mechanism used to create
implementations of the interfaces.

RuleRuntime

Figure 2 RuleRuntime Class Diagram

The RuleRuntime interface must expose methods to create RuleSession
implementations given a previously registered RuleExecutionSet URI. The
RuleRuntime implementation must also expose a method to retrieve a List of all
registered RuleExecutionSet URIs.

Note that the methods on the RuleRuntime interface have been defined to throw
java.rmi.RemoteException to allow implementers to provide a RMI stub-based
implementation.
12 Java Rule Engine API

Architecture
Please refer to the API documentation in Appendix A for more detail.

RuleExecutionSetMetadata

Figure 3 RuleExecutionSetMetadata Class Diagram

The RuleExecutionSetMetadata interface exposes metadata about a
RuleExecutionSet to runtime clients of a RuleSession. The RuleExecutionSet
is not exposed directly to runtime clients as it may contain data that is only appropriate
for rule administrators or which could change without notice.
Java Rule Engine API 13

Java Rule Engine API
RuleSession

Figure 4 Stateful and Stateless RuleSession Class Diagram

The RuleSession interface defines the common behavior for the
StatefulRuleSession and StatelessRuleSession interfaces. It provides a client
programmer who has acquired a RuleSession with the means to:

� Retrieve the RuleExecutionSetMetadata for the RuleSession.

� Get the type of the RuleSession (must be one of
RuleRuntime.STATEFUL_SESSION_TYPE or
RuleRuntime.STATELESS_SESSION_TYPE).

� Release the resource associated with the RuleSession, rendering the
RuleSession invalid. Subsequent attempts to access the RuleSession instance
must throw an InvalidRuleSessionException.

StatelessRuleSession

The StatelessRuleSession interface provides client programmers with a
convenient mechanism to submit a List of input Objects to a rule engine, have them
evaluated against a RuleExecutionSet, and have the output Objects returned. In
14 Java Rule Engine API

Architecture
addition, the client can supply an ObjectFilter implementation to select those
Objects that should be returned from the rule engine. A well-written ObjectFilter
could prevent output Objects from the rule engine being unnecessarily serialized
between the caller and the rule engine.

If no ObjectFilter is supplied, the default ObjectFilter attached to the
RuleExecutionSet must be used to perform output Object filtering. If no default
RuleExecutionSet ObjectFilter has been specified, all output Objects must be
returned.

StatefulRuleSession

The StatefulRuleSession interface provides client programmers with the ability to
conduct potentially long running conversations with the rule engine. Input Objects
can be progressively added to the StatefulRuleSession through the addObject
method and output Objects can be progressively retrieved through the getObject
method. Objects that have been added to the StatefulRuleSession must be
removed and updated using the removeObject and updateObject methods. A client
programmer must test for the existence of an added Object using the
containsObject method. The removeObject, updateObject, and
containsObject methods must all use rule engine vendor created Handle instances
to refer to and identify Object instances.

ObjectFilter Interface

Figure 5 ObjectFilter Class Diagram

The client programmer writes instances of classes implementing the ObjectFilter
interface. An ObjectFilter instance can be passed to the
StatefulRuleSession.getObjects and
StatelessRuleSession.executeRules methods. The rule engine vendor must use
the supplied ObjectFilter implementation to filter the Objects returned in the
output Lists from both methods.
Java Rule Engine API 15

Java Rule Engine API
For example, the simple ObjectFilter shown in the code below filters objects based
on Class.

Note that this ObjectFilter may not be suitable for use in an environment where
multiple ClassLoaders are present.

public class ClassFilter implements ObjectFilter
{

private Class filterClass;

public ClassFilter(Class clazz)
{

filterClass = clazz;
}

/**

* The main filtering method on the interface.
* @param obj the object to be filtered.
* @return the result of the filtering or <tt>null</tt>.
*/

public Object filter(Object obj)
{

if (filterClass.isAssignableFrom(obj.getClass()))
{

return obj;
}

return null;
}

/**
* Stateful filters should implement this interface to
* allow them to be reset to an intial state.
*/

public void reset()
{
}

}

16 Java Rule Engine API

Architecture
Handle Interface

Figure 6 Handle Class Diagram

To ensure that Object instances can be unambiguously identified in the event of
multiple ClassLoaders being used or the StatefulRuleSession being serialized,
responsibility for tracking Object references is delegated to the rule engine. This
allows multiple instances of Objects that are equivalent using Object.equals to
exist within the StatefulRuleSession�a common requirement of rule engines.

Handle instances are used by the StatefulRuleSession to uniquely identify
instances of Objects. The containsObject, getObject, removeObject, and
updateObject methods operate on an Object instance that has been previously
added to the StatefulRuleSession using the addObject or addObjects methods.
The addObject methods must return a Handle instance for an Object added to a
StatefulRuleSession. The returned Handle instance must be subsequently usable
to refer to the added Object using the containsObject, getObject,
removeObject, and updateObject methods.

Note that a call to executeRules may invalidate Handles held by the client, if the
Objects bound to the Handles are removed from the RuleSession state. A client
should use the containsObject method to test for the existence of an Object bound
to a Handle or catch InvalidHandleExceptions appropriately.

Handle instances must still be valid after the Handle has been serialized or the
StatefulRuleSession has been serialized.

The implementation strategy backing the Handle instance returned by a rule engine
vendor is not defined in the specification and must be opaque to the client code using
the Handle.

10.2 Administrator API

The administrator API for the specification is defined in the javax.rules.admin
package. The high-level capabilities of the administrator API are:
Java Rule Engine API 17

Java Rule Engine API
� Acquire an instance of the RuleAdministrator interface through the
RuleServiceProvider class.

� Create a RuleExecutionSet from external Serializable or non-Serializable
resources, as listed below:

� org.w3c.dom.Element � for reading from an XML sub-document.

� java.io.InputStream � for reading from binary streams.

� java.lang.Object � for reading from vendor specific abstract-syntax-trees.

� java.io.Reader � for reading from character streams.

� java.lang.String � for reading from a URI.

� Register a RuleExecutionSet object against a URI for use from the
RuleRuntime. Registrations should be persistent and the rule engine vendor
should clearly document the scope of a registration.

� Deregister a RuleExecutionSet object from a URI so it is no longer accessible
from the RuleRuntime.

� Query the structural metadata of a RuleExecutionSet by retrieving a list of
Rule objects from the RuleExecutionSet.

� Set and get application or vendor specific properties on RuleExecutionSets
and Rules.

RuleAdministrator

Figure 7 RuleAdministrator Class Diagram

The RuleAdministrator interface defines the Administration API listed above.
18 Java Rule Engine API

Architecture
Note that the methods on the RuleAdministrator interface have been defined to
throw java.rmi.RemoteExcepion to allow implementers to provide a RMI
stub-based implementation.

The RuleAdministrator allows RuleExecutionSet instances to be registered
against a URI for use from the runtime API, as well as methods to retrieve a
RuleExecutionSetProvider and a LocalRuleExecutionSetProvider
implementation.

Note that rule engine vendors may choose not to implement a
LocalRuleExecutionSetProvider, in which case rule engine vendors should return
null when invoking the getRuleExecutionSetProvider method.

RuleExecutionSetProvider

Figure 8 RuleExecutionSetProvider Class Diagram

The RuleExecutionSetProvider interface defines methods to create a
RuleExecutionSet from a number of Serializable sources. The contents of these
sources may be serialized or marshaled across JVMs to a remote rule engine
implementation at a rule engine vendor�s discretion. This is in contrast to the
LocalRuleExecutionSetProvider, which creates RuleExecutionSet instances
from resources that cannot be referenced by a remote rule engine.

Please refer to the Javadoc API documentation for more detail.
Java Rule Engine API 19

Java Rule Engine API
LocalRuleExecutionSetProvider

Figure 9 LocalRuleExecutionSetProvider Class Diagram

The LocalRuleExecutionSetProvider interface defines methods to create a
RuleExecutionSet from non-Serializable resources, such as binary
InputStreams or character-based Readers. The
LocalRuleExecutionSetProvider may only be relevant to rule engines that are
running in the JVM of the caller, and hence providing an implementation of this
interface is optional for rule engine vendors. Rule engine vendors must return �null�
from the RuleAdministrator.getLocalRuleExecutionSetProvider method if
not supporting this functionality.

Please refer to the API documentation in Appendix A for more detail.

RuleExecutionSet Registration URI

The binding mechanism used to associate a binary RuleExecutionSet instance with
a String URI is not prescribed by the specification.
20 Java Rule Engine API

Architecture
Rule

Figure 10 Rule Class Diagram

The Rule interface merely exposes name and description metadata for a Rule.

A Rule interface must also contain getProperty and setProperty methods to allow
vendor specific (opaque to the specification) properties to be associated with Rules.

RuleExecutionSet

Figure 11 RuleExecutionSet Class Diagram

The RuleExecutionSet interface exposes name and description metadata for a
RuleExecutionSet. The RuleExecutionSet interface also contains the getRules
method, which allow the client programmer to retrieve the Rule objects contained in
the RuleExecutionSet.
Java Rule Engine API 21

Java Rule Engine API
A default ObjectFilter is also associated with a RuleExecutionSet. If supplied by
the client programmer through the setDefaultObjectFilter method, this
ObjectFilter must be used when the StatelessRuleSession.executeRules or
StatefulRuleSession.getObjects methods are called and no overriding
ObjectFilter is supplied.

The RuleExecutionSet interface must also contain getProperty and setProperty
methods to allow vendor specific (opaque to the specification) properties to be
associated with RuleExecutionSets.

11 Use Cases

11.1 Usage from J2SE

The following code illustrates how a RuleExecutionSet can be created from an
external resource using the RuleAdministrator, a RuleSession created for the
RuleExecutionSet, and the RuleSession used to calculate output Objects from
input Objects.
22 Java Rule Engine API

Use Cases
Runtime API

// load the RuleServiceProvider for the vendor
Class.forName("org.jcp.jsr94.ri.RuleServiceProvider");

RuleServiceProvider serviceProvider =
RuleServiceProviderManager.getRuleServiceProvider(RULE_SERVICE_PROVIDER);

// create a stateless RuleSession
RuleRuntime ruleRuntime = serviceProvider.getRuleRuntime();
StatelessRuleSession srs = (StatelessRuleSession)
ruleRuntime.createRuleSession(bindUri, null,
RuleRuntime.STATELESS_SESSION_TYPE);

// execute all the rules
List inputList = new LinkedList();
inputList.add(new String("Foo"));
inputList.add(new String("Bar"));
inputList.add(new Integer(5));
inputList.add(new Float(6));
List resultList = srs.executeRules(inputList);
System.out.println("executeRules: " + resultList);

// release the session
srs.release();
Java Rule Engine API 23

Java Rule Engine API
11.2 Scenario: Rule Administration

The following code illustrates how a RuleExecutionSet can be created from an
external resource and then registered so that it is accessible from the RuleRuntime.

String RULE_SERVICE_PROVIDER = "org.jcp.jsr94.jess";

// Load the rule service provider of the reference
// implementation.
// Loading this class will automatically register this
// provider with the provider manager.

Class.forName("org.jcp.jsr94.jess.RuleServiceProviderImpl");

// Get the rule service provider from the provider manager.

RuleServiceProvider serviceProvider =

RuleServiceProviderManager.getRuleServiceProvider(
RULE_SERVICE_PROVIDER);

// get the RuleAdministrator

RuleAdministrator ruleAdministrator =
serviceProvider.getRuleAdministrator();

// get an input stream to a ruleset

InputStream inStream = getResourceAsStream("input_rules.xml");

// parse the ruleset

RuleExecutionSet res1 =
ruleAdministrator.getLocalRuleExecutionSetProvider(null).

createRuleExecutionSet(inStream, null);

inStream.close();

// register the RuleExecutionSet

String uri = res1.getName();
ruleAdministrator.registerRuleExecutionSet(uri, res1, null);
24 Java Rule Engine API

Use Cases
11.3 Scenario: Stateless Rule Session

The following code illustrates acquiring a StatelessRuleSession instance for a
previously registered RuleExecutionSet and executing it with a List of input
Objects.

String RULE_SERVICE_PROVIDER = "org.jcp.jsr94.jess";

// Load the rule service provider of the reference
// implementation.
// Loading this class will automatically register this
// provider with the provider manager.

Class.forName("org.jcp.jsr94.jess.RuleServiceProviderImpl");

// Get the rule service provider from the provider manager.

RuleServiceProvider serviceProvider =
RuleServiceProviderManager.getRuleServiceProvider(
RULE_SERVICE_PROVIDER);

// Get a RuleRuntime and invoke the rule engine.

RuleRuntime ruleRuntime = serviceProvider.getRuleRuntime();

// create a StatelessRuleSession

StatelessRuleSession statelessRuleSession =
(StatelessRuleSession) ruleRuntime.createRuleSession(uri,
new HashMap(), RuleRuntime.STATELESS_SESSION_TYPE);

// call executeRules with some input objects

Customer inputCustomer = new Customer("test");
inputCustomer.setCreditLimit(5000);

// Create a input list.

List input = new ArrayList();
input.add(inputCustomer);

// Execute the rules without a filter.

List results = statelessRuleSession.executeRules(input);

// Release the session.

statelessRuleSession.release();
Java Rule Engine API 25

Java Rule Engine API
11.4 Scenario: Stateful Rule Session

The following code illustrates acquiring a StatefulRuleSession instance for a
previously registered RuleExecutionSet, periodically adding input Objects,
accessing Objects using Handles, and periodically extracting output Objects.

String RULE_SERVICE_PROVIDER = "org.jcp.jsr94.jess";

// Load the rule service provider of the reference
// implementation.
// Loading this class will automatically register this
// provider with the provider manager.

Class.forName("org.jcp.jsr94.jess.RuleServiceProviderImpl");

// Get the rule service provider from the provider manager.

RuleServiceProvider serviceProvider =
RuleServiceProviderManager.getRuleServiceProvider(

RULE_SERVICE_PROVIDER);

RuleRuntime ruleRuntime = serviceProvider.getRuleRuntime();

// create a StatefulRuleSession

StatefulRuleSession statefulRuleSession =
(StatefulRuleSession) ruleRuntime.createRuleSession(uri,
new HashMap(),
RuleRuntime.STATEFUL_SESSION_TYPE);

// Add an Invoice.

Invoice inputInvoice = new Invoice("Invoice");
inputInvoice.setAmount(1750);

// add an Object to the statefulRuleSession

statefulRuleSession.addObject(inputInvoice);

//execute the rules

statefulRuleSession.executeRules();

// extract the Objects from the statefulRuleSession

results = statefulRuleSession.getObjects();

// Add another Invoice.
26 Java Rule Engine API

Roles and Responsibilities
Invoice inputInvoice2 = new Invoice("Invoice 2");
inputInvoice2.setAmount(3000);

//execute the rules

statefulRuleSession.executeRules();

// extract the Objects from the statefulRuleSession

results = statefulRuleSession.getObjects();

// release the statefulRuleSession

statefulRuleSession.release();

12 Roles and Responsibilities

The following section specifies responsibilities of the roles involved in the
configuration and use of a compliant implementation.

12.1 Rule Engine Vendor

The rule engine vendor is responsible for providing a compliant implementation of the
specification.

The rule engine vendor should provide an implementation that functions in the J2SE
environment.

The rule engine vendor should document the semantics of executing the rule execution
set.

The rule engine vendor must document all vendor specific properties, their effects, and
the default behavior (if properties are not specified).

The rule engine vendor must document where vendor-specific rule execution set
documents are to be located so they can be accessed from the RuleAdmistrator API.

The rule engine vendor may provide management tools to register and deregister
RuleExecutionSets using the RuleAdministrator API.
Java Rule Engine API 27

Java Rule Engine API
12.2 Rule Execution Set Administrator

The RuleExecutionSet administrator is responsible for managing the external,
vendor-specific rule execution sets. Rule execution set management entails using
vendor specific management tools.

The RuleExecutionSet administrator must register all RuleExecutionSet
instances that are to be accessible to runtime clients through the RuleRuntime
interface. If provided by the rule engine vendor or application server vendor, this may
require using management tools. If no management tools are available, the
RuleExecutionSet administrator must write compliant code to the
RuleAdministrator interface to make RuleExecutionSets accessible.

12.3 Rule Runtime Client

The client of the RuleRuntime is responsible for runtime interaction with a
RuleSession to execute application logic. The RuleRuntime client should remain
cognizant of their dependence on rule engine vendor-specific feature extensions and
should avoid using feature extensions if binary compatibility between compliant rule
engines is desired.

13 Deployment Scenarios

13.1 Scenario: J2SE

Deployment into the J2SE environment should be simple to perform for client
programmers.

Typical steps may involve the following:

� Install and download the rule engine vendor�s product.

� Perform rule engine vendor-specific configuration.
28 Java Rule Engine API

Error Logging and Tracing
� The rule engine vendor should supply the name of the RuleServiceProvider
class to be instantiated using a Class.forName(…) call as well as the
RuleServiceProvider URI used by the rule engine vendor. The URI can then
be used with the RuleServiceProviderManager class to instantiate the correct
RuleServiceProvider.

The rule engine vendor should strive to keep client programmer code independent of
their rule engine implementation, unless the client programmer requires access to
additional features not covered by the specification.

The rule engine vendor should strive to keep client programmer code independent of
the J2SE environment.

14 Error Logging and Tracing

Rule engine vendors and client programmers should use a JSR-47, Logging API
Specification compliant logging implementation when available (JDK 1.4).

15 Security

The specification separates the runtime and administration functionality of registering
rule execution sets and executing them into individual packages. This allows more
flexibility in implementing security policy or accessing control.

The specification takes the view that security is the responsibility of the environment
that hosts the compliant implementation and the client programmer.

Within J2SE a number of security features and specifications exist that can be
employed by implementers to limit runtime access to Objects, methods on Classes,
as well as performing authentication and authorization checking on the runtime user of
the rule engine.

Amongst the standard security components of the Java 2 Platform are the following:

� Java Authentication and Authorization Service (JAAS)
Java Rule Engine API 29

Java Rule Engine API
� Java Cryptography Extension (JCE)

� Java Secure Socket Extension (JSSE)

JAAS, JCE, and JSSE are all standard components of the JDK 1.4 platform.

JDK 1.3 and above provides client programmers with the ability to define a declarative
security policy using a security policy file. The security policy defines the constraints
to be imposed on the Java sandbox used to execute all client code. By defining an
appropriate security policy, client programmers can limit the methods and classes
accessible from client code.

15.1 Scenario: J2SE

Implementers or client programmers may implement custom security solution using
any standard or proprietary security technologies. Implementers should strive to make
security features optional to their implementations and unobtrusive to the client
programmer to ensure client programmer code is portable across specification
implementations.

16 Exceptions

The specification defines the class javax.rules.RuleException as the root of the
exception hierarchy. All exceptions are checked exceptions and must be explicitly
caught or thrown by implementer and client code.

16.1 Rule Execution Exceptions

The specification defines the class javax.rules.RuleExecutionException as the
root of the execution exception hierarchy.
30 Java Rule Engine API

Exceptions
Figure 12 Runtime Client Exceptions Class Diagram

Exception Purpose

InvalidHandleException Thrown when the client programmer passes an invalid
Handle to an implementation. The Handle may
reference an Object that is no longer within the rule
engine, or the implementation class for the Handle may
be invalid for the rule engine.

InvalidRuleSessionException Thrown when a client programmer attempts to use a
RuleSession when it is in an illegal state, or if an
internal rule engine error occurs.

RuleExecutionSetNotFoundException Thrown when a RuleExecutionSet cannot be resolved
with the given URI.

RuleSessionCreateException Thrown if the rule engine is unable to create a
RuleSession. This may be due to resource constraints,
the caller�s credentials, or due to an internal error.

RuleSessionTypeUnsupportedException Thrown if the client programmer requests a
RuleSession of a type that is unsupported. A rule
engine may not support stateful or stateless rule sessions
as a matter of implementation or as an attribute of the
requested rule execution set.
Java Rule Engine API 31

Java Rule Engine API
16.2 Configuration Exception

16.3 Administration Exceptions

The specification defines the class
javax.rules.admin.RuleAdministrationException as the root of the
administration exception hierarchy.

Figure 13 Administration Exceptions Class Diagram

Exception Purpose

ConfigurationException Thrown when the RuleServiceProvider has not
been correctly configured.

Exception Purpose

RuleExecutionSetCreateException Thrown when a RuleExecutionSet cannot be created
from an external resource.

RuleExecutionSetRegisterException Thrown when a RuleExecutionSet instance cannot
be registered against a given URI.

RuleExecutionSetDeregisterationExcep
tion

Thrown when a RuleExecutionSet instance cannot
be unregistered from a given URI.
32 Java Rule Engine API

Required APIs
17 Required APIs

This specification relies on a the following APIs:

� Java 2 SDK, Standard Edition, version 1.3 or above.

� Java API for XML Parsing 1.1 (included in JDK 1.4)

18 Change History

1.1 12/14/2001

� Changes to the RuleServiceProvider and the introduction of the
RuleServiceProviderManager for the J2SE role (specifically).

� Moved Rule and RuleExecutionSet into the admin package and added the
RuleExecutionSetMetadata interface for the runtime package.

� Updated class diagrams.

1.2 7/10/2002

� Updated the license agreement.

1.3 7/29/2002

� Updated the license agreement.

1.4 9/20/2002

� API Changes

1.5 7/16/2003

� License agreement completed and agreed upon by expert group members.

1.6 9/15/2003

� Updated references and incorporated edits.
Java Rule Engine API 33

Java Rule Engine API
19 Acknowledgments

Colleen McClintock, ILOG SA.

Jason Howes, BEA Systems Inc.

Robert Bergman, BEA Systems Inc.

Feng Ye, ProAct Technologies Corp.

Bob McWhirter, The Werken Company

Daniel Selman, ILOG SA.
34 Java Rule Engine API

	Java Rule Engine API
	1 Expert Group Members
	2 Target Audience
	3 Scope
	4 Compliance
	5 References
	6 Definitions
	6.1 Rule Engine
	6.2 Rule
	6.3 Rule Execution Set
	6.4 Rule Session
	6.5 Stateful Rule Session
	6.6 Stateless Rule Session

	7 Document Conventions
	7.1 Key Words
	7.2 Typography

	8 Acronyms and Abbreviations
	9 Introduction
	9.1 Rationale
	9.2 Goals

	10 Architecture
	10.1 Runtime API
	10.2 Administrator API

	11 Use Cases
	11.1 Usage from J2SE
	11.2 Scenario: Rule Administration
	11.3 Scenario: Stateless Rule Session
	11.4 Scenario: Stateful Rule Session

	12 Roles and Responsibilities
	12.1 Rule Engine Vendor
	12.2 Rule Execution Set Administrator
	12.3 Rule Runtime Client

	13 Deployment Scenarios
	13.1 Scenario: J2SE

	14 Error Logging and Tracing
	15 Security
	15.1 Scenario: J2SE

	16 Exceptions
	16.1 Rule Execution Exceptions
	16.2 Configuration Exception
	16.3 Administration Exceptions

	17 Required APIs
	18 Change History
	19 Acknowledgments

