
Architecture Manual

CLIPS Version 5.1

January 6th 1992

CLIPS Architecture Manual
Version 5.1 January 6th 1992

CONTENTS

Preface ...i

Acknowledgements..v

Introduction..1

System Dependent Module..5

Memory Module ...7

Symbol Manager Module...17

Router Module ...27

Scanner Module ..35

Expression Module..41

Special Forms Module...49

Parser Utility Module...53

Evaluation Module...57

Command Line Module..63

Construct Manager Module..69

Utility Module...75

Fact Manager Module..85

Fact Commands Module ..93

Deffacts Manager Module..95

Defglobal Manager Module ...101

Defrule Parser Module...109

Reorder Module...117

CLIPS Architecture Manual i

Variable Manager Module ...121

Analysis Module ..127

Generate Module...135

Build Module..143

Drive Module ...149

Engine Module...161

Match Module ..171

Retract Module...177

Rete Utility Module ..181

Logical Dependencies Module..187

Defrule Manager Module...195

Defrule Deployment Module..203

Defrule Commands Module ...205

Deftemplate Commands Module..207

Deftemplate Functions Module..217

Deftemplate Parser Module...225

Deftemplate LHS Module...229

Binary Save Module ..233

Binary Load Module...243

Construct Compiler Module...251

Primary Functions Module...261

Predicate Functions Module..263

I/O Functions Module...265

Secondary Functions Module..267

ii Table of Contents

Multifield Functions Module...269

String Functions Module..271

Math Functions Module..273

Text Processing Functions Module..275

File Commands Module...277

Deffunction Module..279

Generic Function Commands Module..289

Generic Function Functions Module..299

Generic Function Construct Compiler Interface Module........................311

Generic Function Binary Load/Save Interface Module..........................313

Class Commands Module..315

Class Functions Module ..329

Instance Commands Module..345

Instance Functions Module..357

Message-Handler Commands Module...369

Message-Handler Functions Module...379

Instance-Set Queries Module..395

Definstances Module...413

Object Construct Compiler Interface Module...417

Object Binary Load/Save Interface Module...419

Main Module..421

Index..423

CLIPS Architecture Manual iii

Preface

The History of CLIPS

The origins of the C Language Integrated Production System (CLIPS) date back to
1984 at NASA’s Johnson Space Center. At this time, the Artificial Intelligence Section
(now the Software Technology Branch) had developed over a dozen prototype expert
systems applications using state-of-the-art hardware and software. However, despite
extensive demonstrations of the potential of expert systems, few of these applications
were put into regular use. This failure to provide expert systems technology within
NASA’s operational computing constraints could largely be traced to the use of LISP
as the base language for nearly all expert system software tools at that time. In
particular, three problems hindered the use of LISP based expert system tools within
NASA: the low availability of LISP on a wide variety of conventional computers, the
high cost of state-of-the-art LISP tools and hardware, and the poor integration of LISP
with other languages (making embedded applications difficult).

The Artificial Intelligence Section felt that the use of a conventional language, such as
C, would eliminate most of these problems, and initially looked to the expert system
tool vendors to provide an expert system tool written using a conventional language.
Although a number of tool vendors started converting their tools to run in C, the cost of
each tool was still very high, most were restricted to a small variety of computers, and
the projected availability times were discouraging. To meet all of its needs in a timely
and cost effective manner, it became evident that the Artificial Intelligence Section
would have to develop its own C based expert system tool.

The prototype version of CLIPS was developed in the spring of 1985 in a little over two
months. Particular attention was given to making the tool compatible with expert
systems under development at that time by the Artificial Intelligence Section. Thus, the
syntax of CLIPS was made to very closely resemble the syntax of a subset of the ART
expert system tool developed by Inference Corporation. Although originally modelled
from ART, CLIPS was developed entirely without assistance from Inference or access
to the ART source code.

The original intent of the prototype was to gain useful insight and knowledge about the
construction of expert system tools and to lay the groundwork for the construction of a
fully usable tool. The CLIPS prototype had numerous shortcomings, however, it
demonstrated the feasibility of the project concept. After additional development, it
became apparent that sufficient enhancements to the prototype would produce a low
cost expert system tool that would be ideal for the purposes of training. Another year of
development and internal use went into CLIPS improving its portability, performance,
and functionality. A reference manual and user’s guide were written during this time.

CLIPS Architecture Manual i

The first release of CLIPS to groups outside of NASA, version 3.0, occurred in the
summer of 1986.

Further enhancements transformed CLIPS from a training tool into a tool useful for the
development and delivery of expert systems as well. Versions 4.0 and 4.1 of CLIPS,
released respectively in the summer and fall of 1987, featured greatly improved
performance, external language integration, and delivery capabilities. Version 4.2 of
CLIPS, released in the summer of 1988, was a complete rewrite of CLIPS for code
modularity. Also included with this release were an architecture manual providing a
detailed description of the CLIPS software architecture and a utility program for aiding
in the verification and validation of rule-based programs. Version 4.3 of CLIPS,
released in the summer of 1989, added still more functionality.

Originally, the primary representation methodology in CLIPS was a forward chaining
rule language based on the Rete algorithm (hence the Production System part of the
CLIPS acronym). Version 5.0 of CLIPS, released in the spring of 1991, introduced two
new programming paradigms: procedural programming (as found in languages such
as C and Ada) and object-oriented programming (as found in languages such as the
Common Lisp Object System and Smalltalk). The object-oriented programming
language provided within CLIPS is called the CLIPS Object-Oriented Language
(COOL).

Because of its portability, extensibility, capabilities, and low-cost, CLIPS has received
widespread acceptance throughout the government, industry, and academia. The
development of CLIPS has helped to improve the ability to deliver expert system
technology throughout the public and private sectors for a wide range of applications
and diverse computing environments. CLIPS is being used by over 3,300 users
throughout the public and private community including: all NASA sites and branches
of the military, numerous federal bureaus, government contractors, 170 universities,
and many companies. CLIPS is available at a nominal cost through COSMIC, the
NASA software distribution center (for more on COSMIC, see appendix E of the Basic
Programming Guide).

CLIPS Version 5.1

Version 5.1 of CLIPS is primarily a software maintenance upgrade required to support
the newly developed and/or enhanced X Window, MS-DOS, and Macintosh interfaces.
For a detailed listing of differences between versions 4.3, 5.0, and 5.1 of CLIPS, refer
to appendix D of the Basic Programming Guide.

CLIPS Documentation

Three documents are provided with CLIPS.

ii Preface

• The CLIPS Reference Manual which is split into the following parts:

• Volume I - The Basic Programming Guide, which provides the definitive
description of CLIPS syntax and examples of usage.

• Volume II - The Advanced Programming Guide, which provides detailed
discussions of the more sophisticated features in CLIPS and is intended for
people with extensive programming experience who are using CLIPS for
advanced applications.

• Volume III - The Utilities and Interfaces Guide, which provides information on
machine-specific interfaces and CLIPS utility programs.

• The CLIPS User's Guide which provides an introduction to CLIPS and is intended
for people with little or no expert system experience.

• Volume I - Rules, which provides an introduction to rule-based programming
using CLIPS.

• Volume II - Objects, which provides an introduction to object-oriented
programming using COOL.

• The CLIPS Architecture Manual which provides a detailed description of the
CLIPS software architecture. This manual describes each module of CLIPS in
terms of functionality and purpose. It is intended for people with extensive
programming experience who are interested in modifying CLIPS or who want to
gain a deeper understanding of how CLIPS works.

CLIPS Architecture Manual iii

Acknowledgements

As with any large project, CLIPS is the result of the efforts of numerous people. The
primary contributors have been: Robert Savely, head of the STB, who conceived the
project and provided overall direction and support; Frank Lopez, who wrote the
original prototype version of CLIPS; Gary Riley, who rewrote the prototype and is
responsible for most of the kernel code; Chris Culbert, who managed the project, wrote
the original CLIPS Reference Manual, and designed the original version of CRSV; Dr.
Joseph Giarratano of the University of Houston-Clear Lake, who wrote the CLIPS
User's Guide; Brian Donnell, who designed and developed the CLIPS Object Oriented
Language (COOL); and Bebe Ly, who is responsible for maintenance and
enhancements to CRSV.

Many other individuals contributed to the design, development, review, and general
support of CLIPS, including: Jack Aldridge, Paul Baffes, Ann Baker, Stephen
Baudendistel, Les Berke, Tom Blinn, Marlon Boarnet, Dan Bochsler, Bob Brown, Barry
Cameron, Tim Cleghorn, Major Paul Condit, Major Steve Cross, Andy Cunningham,
Dan Danley, Kirt Fields, Kevin Greiner, Ervin Grice, Sharon Hecht, Patti Herrick, Mark
Hoffman, Gordon Johnson, Phillip Johnston, Sam Juliano, Ed Lineberry, Bowen Loftin,
Linda Martin, Daniel McCoy, Terry McGregor, Becky McGuire, Scott Meadows, C. J.
Melebeck, Paul Mitchell, Steve Mueller, Cynthia Rathjen, Reza Razavipour, Marsha
Renals, Monica Rua, Gregg Swietek, Eric Taylor, James Villarreal, Lui Wang, Jim
Wescott, Charlie Wheeler, and Wes White.

CLIPS Architecture Manual v

Introduction

This manual provides an architecture description for version 5.0 of CLIPS. Each
module of the CLIPS program is described in terms of its functionality and purpose. In
addition, significant variables and functions (both local and global to the modules) are
described. All functions relating to a given module are not necessarily listed. In other
cases, some function names may not directly correspond to their counterpart in the
CLIPS source code. This manual is intended partly as a set of instructions for building
CLIPS from scratch and partly as a roadmap to the 'C' implementation of CLIPS.

Function and variable names will be shown in boldface when they are referred to in
a sentence. Other words which may cause confusion when used in a sentence will
also be shown in boldface. For example, the word and can refer either to the function
and or to the conditional element and.

This manual is written with the assumption that the reader has a basic understand-
ing of the Rete Match Algorithm. A good source for information on the Rete Match Algo-
rithm is Charles Forgy's Ph.D. Dissertation, “On the Efficient Implementation of
Production Systems.” It can be obtained from

University Microfilms International
300 N. Zeeb Road
Ann Arbor, MI 48106
(313) 761-4700

Another source for information is Charles Forgy's article “Rete: A Fast Algorithm for the
Many Pattern/Many Object Pattern Match Problem.” This can be found in Artificial
Intelligence 19, pp. 17-37, 1982.

Document Overview

The modules described in this document are listed in order beginning with the lower-
level modules and ending with the higher-level modules. The higher-level modules
generally require the lower-level modules to operate.

The first four modules (System Dependent, Memory, Symbol Manager, and Router)
provide basic support for very low-level CLIPS operations. The System Dependent
Module (sysdep.c) implements system-dependent features such as timing functions.
The Memory Module (memory.c) is used to efficiently allocate and maintain memory
requests. The Symbol Manager Module (symbol.c) is used to avoid storage
duplication for multiple occurrences of symbols, floats, and integers. It also assures
that storage is not used for symbols, floats, and integers that are no longer in use. The
Router Module (router.c) handles input/output (I/O) requests and allows these requests
to be redirected to different I/O handlers. This redirection capability allows
sophisticated interfaces to be built on top of the CLIPS kernel without making changes
to the code.

The next eight modules (Scanner, Expression, Special Forms, Parser Utility,
Evaluation, Command Line, Construct Manager, and Utility) provide the basic
functionality necessary for expression evaluation, construct support, and the CLIPS
command line interface. The Scanner Module (scanner.c) reads tokens from an input
source. The Expression Module (expressn.c) builds expressions from tokens returned
by the Scanner Module. The Special Forms Module (spclform.c) is used for parsing

CLIPS Architecture Manual 1

functions that do not conform with the standard syntax for function expressions (such
as the assert function). The Parser Utility Module (parsutil.c) contains some utility
functions useful for parsing both functions and constructs. The Evaluation Module
(evaluatn.c) can evaluate expressions generated by the Expression Module. The
Command Line Module (commline.c) provides the necessary functionality for a com-
mand line interface. It also is capable of determining when an expression has been
formed from a series of input characters before it calls the Expression Module to build
an expression. It then calls the Evaluation Module to evaluate the expression. The
Construct Manager Module (constrct.c) provides the necessary support for registering
constructs so that they are recognized by the CLIPS parser. It calls the appropriate
routines needed by each construct for loading and parsing, resetting, and clearing.
The Utility Module (utility.c) provides a number of general purpose routines for printing
values, detecting errors, handling garbage collection, and registering items for use
with the watch command.

The Fact Manager Module (factmngr.c) is used to maintain the fact-list and provide
support for the creation of multifield values (by functions such as mv-append). The
Fact Commands Module (factcom.c) implements the top level interface for commands
such as assert and facts.

The Deffacts Module (deffacts.c) provides the capability needed to implement the
deffacts construct. The Defglobal Module (defglobl.c) provides the capability needed to
implement the defglobal construct.

The next six modules (Defrule Parser, Reorder, Variable Manager, Analysis,
Generate, and Build) are used to build the appropriate data structures for the defrule
construct. The Defrule Parser Module (ruleprsr.c) is used to parse the left-hand side
(LHS) of a rule, yielding an intermediate data structure. The Reorder Module
(reorder.c) transforms the LHS of a single rule containing and and or conditional
elements nested throughout the intermediate LHS data structure into an intermediate
data structure which contains at most a single or conditional element at the beginning
of the intermediate data structure. The Variable Manager Module (variable.c) checks
the patterns on the LHS of a rule for semantic errors involving variables. It also
maintains information about the location and usage of variables in the patterns of a
rule. The Analysis Module (analysis.c) works closely with the Variable Manager
Module to generate expressions for the rule that will be used in the join and pattern
networks. The Generate Module (generate.c) is used to generate the expressions
requested by the Analysis Module. The Build Module (build.c) is used to integrate the
new rule and its expressions into the join and pattern network.

The next six modules (Drive, Engine, Match, Retract, Rete Utility, and Logical
Dependencies) form the core of the CLIPS inference engine. The Drive Module
(drive.c) is used to update the join network when a fact has been added. The Engine
Module (engine.c) maintains the agenda and handles execution of the RHS of rules.
The Match Module (match.c) determines which patterns in the pattern network have
been matched when a fact has been added. The Retract Module (retract.c) is used to
update the join network when a fact is removed. The Rete Utility Module (reteutil.c)
provides useful utility functions used by other modules for maintaining the join
network. The Logical Dependencies Module (lgcldpnd.c) is used to maintain the links
between the join network and facts to support the logical conditional element.

The Defrule Manager Module (defrule.c) coordinates the activities of all modules
used for maintaining the defrule construct. The Defrule Deployment Module
(drulebin.c) provides the functionality needed to use the defrule construct with the

2 Introduction

bsave, bload, and constructs-to-c commands. The Defrule Commands Module
(rulecom.c) implements the top level interface for defrule commands.

The Deftemplate Command Module (deftmcom.c) is used for maintaining
deftemplates, providing type and value checking for deftemplate slots, providing the
top level interface for deftemplate commands, and providing the functionality needed
to use the deftemplate construct with the bsave, bload, and constructs-to-c
commands. The Deftemplate Function Module (deftmfun.c) is used for parsing assert,
modify, and duplicate commands which use deftemplate formats. The Deftemplate
Parser Module (deftmpsr.c) is used to parse the deftemplate construct. The
Deftemplate LHS Module (deftmlhs.c) is used to parse deftemplate patterns found on
the LHS of a rule.

The Binary Save Module (bsave.c) provides the functionality needed for the bsave
command, the Binary Load Module (bload.c) provides the functionality needed for the
bload command, and the Construct Compiler Module (constrct.c) provides the
functionality needed for the constructs-to-c command.

The next nine modules (Primary Functions, Predicate Functions, I/O Functions,
Secondary Functions, Multifield Functions, String Functions, Math Functions, Text
Processing Functions, and File Commands) provide functions and commands for a
variety of tasks. The Primary Functions Module (sysprime.c) provides a set of
environment commands and procedural functions.The Predicate Functions Module
(syspred.c) provides a number of predicates and simple mathematical functions
commonly used in CLIPS. The I/O Functions Module (sysio.c) provides a number of
functions convenient for performing I/O. The Secondary Functions Module
(syssecnd.c) provides a set of useful functions that perform a wide variety of useful
tasks. The Multifield Functions Module (multivar.c) provides a set of useful functions for
use with multifield values. The String Functions Module (strings.c) provides a set of
useful functions for manipulating strings. The Math Functions Module (math.c)
provides a set of useful math functions beyond the basic math functions provided by
the Predicate Functions Module. The Text Processing Module (textpro.c) provides a
set of useful functions for building and accessing a hierarchical lookup system for
multiple external files. The File Commands Module (filecom.c) provides a set of useful
interface commands that performs certain file operations not associated with standard
file I/O operations.

The Deffunction Module (deffnctn.c) provides the capability to define new
user-defined functions directly in CLIPS.

The next four modules implement overloaded functions which can be defined
directly in CLIPS: Generic Function Commands, Generic Function Functions, Generic
Function Construct Compiler Interface and Generic Function Binary Load/Save
Interface. Generic functions can do different things depending on the number and type
of arguments they receive. The Generic Function Commands Module (genrccom.c)
contains most of the parsing routines necessary for generic functions and their
methods. The Generic Function Functions Module (genrcfun.c) determines the
precedence between different methods of a generic function, provides the generic
dispatch when a generic function is actually called and contains various other
maintenance routines for generic functions and their methods. The Generic Function
Construct Compiler Interface (genrccmp.c) and the Generic Function Binary
Load/Save Interface Modules provide the interfaces for generic functions to the
constructs-to-c and bload/bsave commands.

CLIPS Architecture Manual 3

The next ten modules give all the functionality of the CLIPS Object-Oriented
Language (COOL): Class Commands, Class Functions, Instance Commands, Instance
Functions, Message-Handler Commands, Message-Handler Functions, Instance-Set
Queries, Definstances, Object Construct Compiler Interface and Object Binary
Load/Save Interface. The Class Commands Module (classcom.c) furnishes the
parsing and general interface routines for the defclass construct. The Class Functions
Module (classfun.c) handles all the internal manipulations of classes, including the
construction of class precedence lists from multiple inheritance. The Instance
Commands Module (inscom.c) provides the parsing and general interface functions for
instances of user-defined classes. The Instance Functions Module (insfun.c) deals with
the internal details of creating, accessing and deleting instances. The
Message-Handler Commands Module (msgcom.c) contains the parsing and general
interface routines for the procedural attachments to classes. The Message-Handler
Functions Module (msgfun.c) implements the message dispatch when a message is
actually sent to an object and maintains the internal details of the defmessage-handler
construct. The Instance-Set Queries Module (insquery.c) provides the routines for a
useful query system which can determine and perform actions on sets of instances of
user-defined classes that satisfy user-defined criteria. The Definstances Module
(defins.c) provides the capability needed to implement the definstances construct. The
Object Construct Compiler Interface (objcmp.c) and the Object Binary Load/Save
Interface (objbin.c) Modules provide the interfaces for COOL to the constructs-to-c
and bload/bsave commands.

The Main Module (main.c) contains the CLIPS startup function and should be the
only file modified to add extensions or to embed CLIPS under normal circumstances.

Portability Notes

There are a number of coding practices in the CLIPS code that in general have proven
to be portable among a wide variety of machines, but that are not guaranteed to be
portable for all ANSI C compilers. In particular, the conversion of integers to pointers
(and conversion back again expecting the original integer) is used quite extensively to
implement the bload/bsave commands. Strict ANSI C conformance does not
guarantee the portability of converting non-zero integers to pointers. Such a
conversion may involve a representation change which would cause a subsequent
conversion back to an integer to yield a value other than the original starting integer.
Some machines may also generate access violations when attempting to store
integers into pointer values when the integers represent invalid addresses. Also,
similar to typecasting integers to pointers, typecasting a pointer type into another
pointer type and expecting to be able to retrieve the original pointer is also not always
ANSI C conformant (depending upon the pointer types). The code may be changed to
be more portable in the next release. Compromises to functionality and efficiency will
be considered when making these determinations.

4 Introduction

System Dependent Module

The System Dependent Module (sysdep.c) maintains a set of functions that contains
system and/or machine dependent features (such as timing functions) and initialization
routines. The generic setting for CLIPS will compile the functions in this module to
forms which should run on any system or machine.

GLOBAL VARIABLES

None.

INTERNAL VARIABLES

None.

GLOBAL FUNCTIONS

CatchControlC

PURPOSE: A function which provides for interrupt handling. Used to
break execution when ctrl-C is pressed.

C IMPLEMENTATION: Handled on most machines by using the signal function.

genexit

PURPOSE: Generic exit routine.

ARGUMENTS: Exit number. The number -1 indicates a normal exit from
CLIPS. The number 1 indicates CLIPS was unable to obtain
necessary memory; the number 2 indicates an arbitrary limit
has been exceeded; and the numbers 3 through 6 indicate
that an internal CLIPS error has occurred.

genrand

PURPOSE: Generic random number generator function.

RETURNS: A randomly generated number (or zero if no random number
facility is available).

C IMPLEMENTATION: Handled on most machines by using the rand function.

genseed

PURPOSE: Generic function for seeding the random number generator.

ARGUMENTS: An integer “seed” value.

CLIPS Architecture Manual 5

C IMPLEMENTATION: Handled on most machines by using the srand function.

gensystem

PURPOSE: A generic function which access to Operating System (OS)
commands.

ARGUMENTS: A string which is a command to be executed by the OS.

gentime

PURPOSE: A generic function for providing time information.

RETURNS: Current time as a floating-point number.

InitializeCLIPS

PURPOSE: Performs initialization of CLIPS.

OTHER NOTES: Initialization differs between standard and run-time
configurations.

InitializeNonportableFeatures

PURPOSE: Performs machine-dependent initialization for features such
as interrupt handling.

RerouteStdin

PURPOSE: Forces CLIPS to read input from a file when the -f option is
used when CLIPS is first started.

SystemFunctionDefinitions

PURPOSE: Sets up the definitions of CLIPS system defined functions.

6 System Dependent Module

Memory Module

Allocation of memory occurs constantly during loading, browsing, and execution of
CLIPS programs. Memory allocation/deallocation is provided through two levels of
indirection. The first level of indirection provides separation from the system-level
allocation/deallocation functions. Functions genalloc and genfree (defined in the
Machine Dependent Module) provide the first level of indirection. Another level of indi-
rection is needed to allow for efficient memory usage. This second level of indirection
provides efficiency by taking advantage of the fact that data structures of the same size
are constantly being requested and freed by CLIPS. If memory is constantly being re-
quested from the system, freed to the system, and then immediately rerequested from
the system, a great deal of inefficiency can occur. If memory requested and then freed
by CLIPS is maintained by internal CLIPS memory management routines, much of the
overhead of constantly requesting, freeing, and rerequesting memory can be avoided.

The Memory Module also contains routines which perform block memory manage-
ment. These routines provide another level of indirection for memory management if
desired. Block memory management routines request large blocks of memory from the
system and split these large blocks to provide memory for smaller requests. On certain
machines, this can provide increased efficiency if the system-level memory manage-
ment routines are not very efficient at handling small blocks of memory.

CLIPS memory management of free memory blocks utilizes an array of pointers to
memory blocks (the MemoryTable). The array index refers to the memory size being
stored in that location. Requests for memory of sizes greater than the size of the
MemoryTable are requested from the system. A request with this range would re-
trieve the block of memory pointed to by the array (if one exists). Returned memory
would be added to the linked list of memory already stored in the array. The first four
bytes of all memory would be used as a pointer to the next block of memory (hence,
the 4-byte memory restriction for requests). Requests of less than four bytes are auto-
matically converted to 4-byte requests.

Functions defined in this module should be used by external functions that wish to
utilize memory in conjunction with the CLIPS kernel. The use of functions genalloc
and genfree should be avoided in external functions.

GLOBAL VARIABLES

MemoryTable

PURPOSE: A table containing free memory of various sizes.

C IMPLEMENTATION: Currently implemented as an array of pointers to various
sizes of memory. For example, array location 7 would have a
pointer to the first free block of memory of size 7. Each
memory block uses its first four bytes as a pointer to the next
free block of memory; therefore, memory blocks of less than
size 4 cannot be stored in the memory table.

CLIPS Architecture Manual 7

TempMemoryPtr

PURPOSE: Provides a global temporary pointer for use with deallocation
macros.

TempSize

PURPOSE: Provides a global temporary integer for use with allocation of
variable size structure macros.

INTERNAL VARIABLES

BlockInfoSize

PURPOSE: Amount of space needed to store information pertaining to a
block of memory. Only defined when block memory man-
agement is in use.

BlockMemoryInitialized

PURPOSE: Boolean variable indicating whether block memory
management has been initialized. Only defined when block
memory management is in use.

ChunkInfoSize

PURPOSE: Amount of space needed to store information pertaining to a
chunk of memory that has been allocated for use. Only
defined when block memory management is in use.

ConserveMemory

PURPOSE: Boolean flag which indicates whether or not memory should
be conserved. If TRUE, then pretty print representations of
constructs are not stored.

MemoryAmount

PURPOSE: Contains amount of memory allocated by CLIPS. Does not
include overhead associated with maintaining the memory.

MemoryCalls

PURPOSE: Contains total number of outstanding memory requests.

8 Memory Module

OutOfMemoryFunction

PURPOSE: A pointer to a function which is to be called when CLIPS
cannot satisfy a memory request. This function either exits
CLIPS or attempts to free the requested amount of memory.

TopMemoryBlock

PURPOSE: Pointer to the top block allocated by the block memory
manager. Only defined when block memory management is
in use.

GLOBAL FUNCTIONS

ActualPoolSize

PURPOSE: Indicates how much memory CLIPS has available in its free
pool. On IBM PC DOS machines, the overhead associated
with allocation is also included.

RETURNS: The number of bytes in the CLIPS free pool of memory (plus
overhead on IBM PC DOS machines).

CopyMemory

PURPOSE: Copies data structures from a source to a destination.

ARGUMENTS: The type of structures being copied, the number of structures
to copy, a pointer to the destination memory, and a pointer to
the source memory.

C IMPLEMENTATION: Implemented as a macro. Calls the function genmemcpy to
copy the memory.

DefaultOutOfMemoryFunction

PURPOSE: The default function which is called when CLIPS runs out of
memory. Prints an “Out of memory” message.

ARGUMENTS: The size of the memory block which could not be allocated
(this argument is unused).

RETURNS: A non-zero value indicating that the memory request cannot
be satisfied and that CLIPS should be exited.

CLIPS Architecture Manual 9

genalloc

PURPOSE: Generic memory allocation function which provides a level of
indirection.

ARGUMENTS: Size of memory requested.

RETURNS: A memory block of the appropriate size.

OTHER NOTES: genalloc uses either malloc or RequestChunk
depending upon whether block memory allocation is being
performed. If genalloc cannot get the requested memory, it
will release all free memory used by CLIPS to the system. It
will then try to allocate the memory again, returning whether
it succeeds or fails. Note that this function is not called by the
CLIPS kernel with the exception of the Memory Module,
which provides another level of memory allocation
indirection.

genfree

PURPOSE: Generic memory release function which provides a level of
indirection.

ARGUMENTS: A block of memory and the memory size.

OTHER NOTES: genfree uses either free or ReturnChunk depending
upon whether block memory allocation is being performed.
Note that this function is not called by the CLIPS kernel with
the exception of the Memory Module, which provides an-
other level of memory deallocation indirection.

genlongalloc

PURPOSE: Generic memory allocation function which provides a level of
indirection.

ARGUMENTS: Size of memory requested as a long integer.

RETURNS: A memory block of the appropriate size.

C IMPLEMENTATION: If the size of an integer is the same as the size of a long
integer or if the long integer can be truncated to an integer,
then genalloc is used to satisfy the request. In addition,
special code is included to handle long integer memory
requests for the Macintosh and IBM PC computers. If the
request cannot be satisfied because the long integer value
cannot be truncated to an integer, then CLIPS is exited.

10 Memory Module

genlongfree

PURPOSE: Generic memory release function which provides a level of
indirection.

ARGUMENTS: A block of memory and the memory size as a long integer.

genmemcpy

PURPOSE: Generic memory copy function which provides a level of
indirection.

ARGUMENTS: A pointer to a block of memory to be copied, a pointer to a
block of memory to store the copied memory, and the
amount of memory to be copied.

RETURNS: No meaningful value.

genrealloc

PURPOSE: Generic memory reallocation function which provides a level
of indirection.

ARGUMENTS: A block of memory, the size of the memory block, and the
new desired size of the memory block.

RETURNS: A memory block of the new size with the contents of the
original memory block.

OTHER NOTES: Current implementation is not very sophisticated. The new
block is allocated using genalloc, the content of the old
block is copied to the new block, and then the old block is
freed using genfree.

GetConserveMemory

PURPOSE: Returns the current value of the ConserveMemory flag.

RETURNS: A boolean value.

get_struct

PURPOSE: Allocates memory needed for a structure.

ARGUMENTS: A structure name.

C IMPLEMENTATION: Implemented as a macro. Uses the global variable
TempMemoryPtr to provide a temporary pointer.

CLIPS Architecture Manual 11

get_var_struct

PURPOSE: Allocates memory needed for a structure of varying size.

ARGUMENTS: A structure name and the size of the variable length portion
of the structure.

C IMPLEMENTATION: Implemented as a macro. Uses the global variable
TempMemoryPtr to provide a temporary pointer.

gm1

PURPOSE: Allocates a block of memory from the CLIPS maintained pool
of free memory. Initializes the contents of the memory to
zero.

ARGUMENTS: Size of memory required.

C IMPLEMENTATION: Searches MemoryTable for free memory of the appropriate
size. Calls genalloc if it cannot find memory of the
appropriate size.

gm2

PURPOSE: Allocates a block of memory from the CLIPS maintained pool
of free memory. Does not initialize the contents of the
memory.

ARGUMENTS: Size of memory required.

C IMPLEMENTATION: Searches MemoryTable for free memory of the appropriate
size. Calls genalloc if it cannot find memory of the
appropriate size.

gm3

PURPOSE: Allocates a block of memory from the CLIPS maintained pool
of free memory. Does not initialize the contents of the
memory.

ARGUMENTS: Size of memory required (a long integer).

C IMPLEMENTATION: Searches MemoryTable for free memory of the appropriate
size. Calls genlongalloc if it cannot find memory of the
appropriate size.

MemoryRequests

PURPOSE: Returns number of memory requests currently outstanding.

12 Memory Module

RETURNS: Number of memory requests currently outstanding.

OTHER NOTES: Uses variables incremented and decremented by genalloc
and genfree.

MemoryUsed

PURPOSE: Returns amount of memory currently allocated by CLIPS.

RETURNS: Amount of memory currently used by CLIPS.

OTHER NOTES: Uses variables incremented and decremented by genalloc
and genfree. May not include overhead memory.

PoolSize

PURPOSE: Indicates how much memory CLIPS has available in its free
pool.

RETURNS: The number of bytes in the CLIPS free pool of memory.

ReleaseMemory

PURPOSE: Releases a specified amount of free memory maintained by
CLIPS back to the system.

ARGUMENTS: A number which indicates when to stop. If the number is -1,
all memory will be released. Otherwise, the function will stop
when the amount of memory released has exceeded the
number. Another argument specifies whether a message is
to be printed when CLIPS releases memory.

RequestChunk

PURPOSE: Allocates memory by returning a chunk of memory from a
larger block of memory.

ARGUMENTS: Size of memory needed.

C IMPLEMENTATION: Implemented using several functions.

ReturnChunk

PURPOSE: Frees memory allocated using RequestChunk.

ARGUMENTS: A pointer to the memory and size of the memory.

C IMPLEMENTATION: Implemented using several functions.

CLIPS Architecture Manual 13

rm

PURPOSE: Returns a block of memory to the CLIPS maintained pool of
free memory.

ARGUMENTS: A pointer to a block of memory and a size argument.

C IMPLEMENTATION: Adds memory to the appropriate location in the
MemoryTable. The first four bytes of the memory block are
modified to point to the next block of free memory of the
same size.

rm3

PURPOSE: Returns a block of memory to the CLIPS maintained pool of
free memory.

ARGUMENTS: A pointer to a block of memory and a size argument.

C IMPLEMENTATION: Adds memory to the appropriate location in the
MemoryTable. The first four bytes of the memory block are
modified to point to the next block of free memory of the
same size. Calls genlongfree to return the memory if it can
not be placed in the MemoryTable.

rtn_struct

PURPOSE: Returns memory needed for a structure to the CLIPS
maintained pool of free memory.

ARGUMENTS: A structure name and a pointer to the structure.

C IMPLEMENTATION: Implemented as a macro. Uses the global variable
TempMemoryPtr for temporary storage.

rtn_var_struct

PURPOSE: Returns memory needed for a structure of varying size to the
CLIPS maintained pool of free memory.

ARGUMENTS: A structure name, the size of the variable length portion of
the structure, and a pointer to the structure.

C IMPLEMENTATION: Implemented as a macro. Uses the global variables
TempMemoryPtr and TempSize for temporary storage.

SetConserveMemory

PURPOSE: Sets the current value of the ConserveMemory flag.

14 Memory Module

ARGUMENTS: A boolean value (the new value of the flag).

RETURNS: A boolean value (the old value of the flag).

SetOutOfMemoryFunction

PURPOSE: Allows the function which is called when CLIPS runs out of
memory to be changed.

ARGUMENTS: A pointer to a function which returns an integer and has a
single integer argument. The argument to the function is the
size of the memory request that could not be satisfied. The
return value of the function should be zero if CLIPS should
attempt to allocate the memory again or non-zero if CLIPS
should not attempt to allocate the memory again (and exit).

RETURNS: A pointer to the previous out of memory function.

UpdateMemoryRequests

PURPOSE: Allows the number of memory requests to CLIPS to be
updated.

ARGUMENTS: A signed integer value to be added to the number of memory
requests currently outstanding.

RETURNS: Updated number of memory requests currently outstanding.

UpdateMemoryUsed

PURPOSE: Allows the amount of memory used by CLIPS to be updated.

ARGUMENTS: A signed integer value to be added to the amount of memory
currently used by CLIPS.

RETURNS: Updated amount of memory currently used by CLIPS.

INTERNAL FUNCTIONS

AllocateBlock

PURPOSE: Adds a new block of memory to the list of memory blocks.

ARGUMENTS: Size of new block and a pointer to the last block of memory
being managed by the memory manager.

CLIPS Architecture Manual 15

AllocateChunk

PURPOSE: Allocates a chunk of memory for use. Called by
RequestChunk when it finds a memory chunk of the
appropriate size.

ARGUMENTS: A pointer to the memory block information record, a pointer
to the memory chunk information record, and the size of
memory requested.

RETURNS: Nothing. Updates information records for future memory
management.

InitializeBlockMemory

PURPOSE: Initializes block memory management and allocates the first
block.

ARGUMENTS: Size of the initial block.

16 Memory Module

Symbol Manager Module

Symbolic data in the form of words and strings must be handled efficiently both in
terms of speed and storage management. CLIPS storage management of symbols
requires that multiple copies of a symbol be stored in the same location. To
accomplish this goal, CLIPS uses a SymbolTable to store all occurrences of
symbols. For example, the fact (data red green red) would require three entries in the
SymbolTable: one each for the symbols data, red, and green. The SymbolTable
also must keep track of symbols that are no longer in use and remove them. To
accomplish this, each symbol is given a count to indicate the number of references to
the symbol. In the above example (assuming no other previous entries in the
SymbolTable), symbols data and green would each have a count of 1 while symbol
red would have a count of 2. If at any time a symbol has a count of 0, it is no longer
necessary to maintain the symbol and it may be removed.

Symbols not expected to remain in the SymbolTable are labeled as ephemeral.
All symbols initially added to the SymbolTable are marked as ephemeral. These
symbols have a count of 0 but are not yet removed. The set of all ephemeral symbols
is maintained in a list. At certain times, the EphemeralSymbolList is traversed to
remove unneeded symbols from the SymbolTable. Ephemeral symbols that still
have a count of 0 are removed from the symbol table, while ephemeral symbols that
have a count greater than 0 are left in the SymbolTable and their ephemeral status
is lost. As an example, consider the following top-level command:

CLIPS> (str-cat "red" "blue")
"redblue"
CLIPS>

Four symbols are created during execution of this command. The symbols str-cat,
red, and blue are added to the SymbolTable when the command is parsed, and the
symbol redblue is added during the execution of the str-cat command. Each of these
symbols is labeled as ephemeral. After execution of this command, none of the
symbols is needed and all can be removed from the SymbolTable. Now consider the
following command:

CLIPS> (assert (data =(str-cat "red" "blue")))
CLIPS>

Six symbols are created during execution of this command. The symbols assert,
data, str-cat, red, and blue are added to the SymbolTable when the command is
parsed, and the symbol redblue is added during the evaluation of the str-cat
function. This command asserts the fact (data redblue) which contains the symbols
data and redblue. The locations in the SymbolTable of these two symbols will
have their count incremented by one to reflect that another non-ephemeral reference
to the symbol is being made. After execution of this command, the symbols assert,
str-cat, red, and blue could be removed from the SymbolTable, whereas the
symbols data and redblue would have to remain.

As stated previously, all symbols are initially marked as ephemeral. This ensures
that temporary symbols created during the parsing of commands and the evaluation of
functions are easily removed. A symbol can have its count incremented in a variety of
ways including the use of a symbol as part of a construct (such as a defrule, deffacts,

CLIPS Architecture Manual 17

or defclass) or the use of a symbol as part of a fact or an instance. As a corollary, the
count of a symbol is decremented whenever the corresponding item which refers to
that symbol is removed (such as deleting a construct or retracting a fact). The
EphemeralSymbolList is periodically checked for symbols that can be removed
from the SymbolTable. These periodic checks occur at various times including after
the execution of a rule, deffunction, generic function, message-handler, or top-level
command.

Because symbols can be created at different evaluation depths (see the Evaluation
Module), it is also necessary to store the evaluation depth at which the symbol was
created. Ephemeral symbols are not deleted unless they have a count of zero and the
ephemeral symbol is being removed at an evaluation depth less than the depth at
which the symbol was created.

In addition to symbols, floating point and integer values are also stored in tables.
Floating point values are stored in the FloatTable and integer values are stored in
the IntegerTable. The operation of these tables is virtually identical to the
SymbolTable (with the primary exception being that they are used to store floats and
integers rather than strings). The SymbolTable is used to store the values for the
CLIPS data types symbol, string, and instance name (i.e. red, "red", and [red] all
have the same location in the SymbolTable). The IntegerTable is only used for
storing the CLIPS data type integer and the FloatTable is only used for storing the
CLIPS data type float. Note that since each symbol, float, or integer data value is
represented by a unique pointer value into a table, comparisons of values can be
accomplished by comparing these pointer values (although types must also be
compared to distinguish between symbols, strings, and instance names).

Symbols can also be linked to other symbols via a relatedSymbol field. In CLIPS
5.1, this field is used only in COOL to conveniently determine the slot name symbol
from a slot-accessor message. For example, the get-temperature slot-accessor
symbol would be linked to the slot name symbol temperature.

GLOBAL VARIABLES

CLIPSFalseSymbol

PURPOSE: A pointer, useful for comparison, to the symbol table entry of
the FalseSymbol generated using the AddSymbol
function.

CLIPSTrueSymbol

PURPOSE: A pointer, useful for comparison, to the symbol table entry of
the TrueSymbol generated using the AddSymbol
function.

18 Symbol Manager Module

INTERNAL VARIABLES

EphemeralFloatList

PURPOSE: A list of pointers to ephemeral floats currently in the
FloatTable.

C IMPLEMENTATION: Implemented as a linked list.

EphemeralIntegerList

PURPOSE: A list of pointers to ephemeral integers currently in the
IntegerTable.

C IMPLEMENTATION: Implemented as a linked list.

EphemeralSymbolList

PURPOSE: A list of pointers to ephemeral symbols currently in the
SymbolTable.

C IMPLEMENTATION: Implemented as a linked list.

FalseSymbol

PURPOSE: The character string that CLIPS uses for the boolean value
FALSE. The value of this string is “FALSE", however, it could
be changed to another value such as “WRONG".

FloatTable

PURPOSE: Stores all floats used by CLIPS.

C IMPLEMENTATION: Implemented as an array. Each entry corresponds to a list of
float table entries. Collisions are resolved by adding the float
entry to list of entries.

IntegerTable

PURPOSE: Stores all integers used by CLIPS.

C IMPLEMENTATION: Implemented as an array. Each entry corresponds to a list of
integer table entries. Collisions are resolved by adding the
integer entry to list of entries.

SymbolTable

PURPOSE: Stores all symbols used by CLIPS.

CLIPS Architecture Manual 19

C IMPLEMENTATION: Implemented as an array. Each entry corresponds to a list of
symbol table entries. Collisions are resolved by adding the
symbol entry to list of entries.

TrueSymbol

PURPOSE: The character string that CLIPS uses for the boolean value
TRUE. The value of this string is “TRUE", however, it could
be changed to another value such as “RIGHT".

GLOBAL FUNCTIONS

AddDouble

PURPOSE: Adds a double precision floating-pointer number to the
FloatTable.

ARGUMENTS: A double precision floating point number that is to be added
to the FloatTable.

RETURNS: The address of the float entry structure for the given number
in the FloatTable.

AddLong

PURPOSE: Adds a long integer to the IntegerTable.

ARGUMENTS: A long integer that is to be added to the IntegerTable.

RETURNS: The address of the integer entry structure for the given
integer in the IntegerTable.

AddSymbol

PURPOSE: Adds a symbol to the SymbolTable.

ARGUMENTS: A string that is to be added to the SymbolTable.

RETURNS: The address of the symbol entry structure for the given string
in the SymbolTable.

DecrementFloatCount

PURPOSE: Decrements the count value for a FloatTable entry. Adds
the float to the EphemeralFloatList if the count becomes
zero.

ARGUMENTS: A FloatTable entry.

20 Symbol Manager Module

DecrementIntegerCount

PURPOSE: Decrements the count value for an IntegerTable entry.
Adds the integer to the EphemeralIntegerList if the count
becomes zero.

ARGUMENTS: An IntegerTable entry.

DecrementSymbolCount

PURPOSE: Decrements the count value for a SymbolTable entry.
Adds the symbol to the EphemeralSymbolList if the count
becomes zero.

ARGUMENTS: A SymbolTable entry.

FindSymbol

PURPOSE: Determines if a symbol is already in the SymbolTable.

ARGUMENTS: A string that is to be searched for in the SymbolTable.

RETURNS: If the string is contained in the SymbolTable, the address
of the symbol entry structure for the given string in the
SymbolTable is returned, otherwise NULL is returned.

FindSymbolMatches

PURPOSE: Finds all symbols in the SymbolTable which begin with a
specified symbol. This function is used to implement the
command completion feature found in some of the CLIPS
machine specific interfaces.

ARGUMENTS: A pointer to a string and a pointer to an integer.

RETURNS: Returns a pointer to a list of symbols which begin with the
specified sequence of characters. The number of matches is
stored in the integer passed as an argument.

GetFloatTable

PURPOSE: Returns a pointer to the FloatTable.

RETURNS: A pointer to the FloatTable.

OTHER NOTES: Normally used by the construct compiler and binary save to
gain access to the FloatTable.

CLIPS Architecture Manual 21

GetIntegerTable

PURPOSE: Returns a pointer to the IntegerTable.

RETURNS: A pointer to the IntegerTable.

OTHER NOTES: Normally used by the construct compiler and binary save to
gain access to the IntegerTable.

GetNextSymbolMatch

PURPOSE: Finds the next symbol in the SymbolTable which begins
with a specified symbol. This function is used to implement
the command completion feature found in some of the
CLIPS machine specific interfaces.

ARGUMENTS: A pointer to a string, the number of characters to use in
performing the comparison of strings, and the previous
symbol in the symbol table which was checked.

RETURNS: Returns a pointer to the next SymbolTable entry which
begins with the specified sequence of characters.

GetSymbolTable

PURPOSE: Returns a pointer to the SymbolTable.

RETURNS: A pointer to the SymbolTable.

OTHER NOTES: Normally used by the construct compiler and binary save to
gain access to the SymbolTable.

HashFloat

PURPOSE: Computes a hash value for a float.

ARGUMENTS: A float and maximum value for the hash value.

RETURNS: An integer hash value which is less than the maximum
value.

C IMPLEMENTATION: The float number is converted to a long integer through the
use of a union structure to yield a hash value. This value is
then divided by the maximum value and the remainder is
returned.

HashInteger

PURPOSE: Computes a hash value for an integer.

22 Symbol Manager Module

ARGUMENTS: An integer and maximum value for the hash value.

RETURNS: An integer hash value which is less than the maximum
value.

C IMPLEMENTATION: The integer value is used as the hash value. This value is
then divided by the maximum value and the remainder is
returned.

HashSymbol

PURPOSE: Computes a hash value for a symbol.

ARGUMENTS: A string and maximum value for the hash value.

RETURNS: An integer hash value which is less than the maximum
value.

C IMPLEMENTATION: The characters of the string are grouped together to form
long integers which are then added together to yield a hash
value. This value is then divided by the maximum value and
the remainder is returned.

IncrementFloatCount

PURPOSE: Increments the count value for a FloatTable entry.

ARGUMENTS: A FloatTable entry.

IncrementIntegerCount

PURPOSE: Increments the count value for an IntegerTable entry.

ARGUMENTS: An IntegerTable entry.

IncrementSymbolCount

PURPOSE: Increments the count value for a SymbolTable entry.

ARGUMENTS: A SymbolTable entry.

InitializeAtomTables

PURPOSE: Initializes the SymbolTable, IntegerTable, and
FloatTable. It also initializes the CLIPSTrueSymbol and
CLIPSFalseSymbol.

CLIPS Architecture Manual 23

RefreshBooleanSymbols

PURPOSE: Resets the values of the CLIPSTrueSymbol and the
CLIPSFalseSymbol.

OTHER NOTES: Normally called during initialization of a run-time module
generated using the constructs-to-c function.

RemoveEphemeralAtoms

PURPOSE: Causes the removal of all ephemeral symbols, integers, and
floats, that still have a count value of zero, from their
respective storage tables. This function performs this action
by calling the functions RemoveEphemeralSymbols,
RemoveEphemeralIntegers, and
RemoveEphemeralFloats.

ReturnSymbolMatches

PURPOSE: Returns a set of symbol matches.

ARGUMENTS: A pointer to a list of symbol matches found using the
FindSymbolMatches function.

SetFloatTable

PURPOSE: Sets the value of the FloatTable.

ARGUMENTS: A pointer to a FloatTable.

OTHER NOTES: Normally used by a run-time module generated using the
constructs-to-c function to install the FloatTable.

SetIntegerTable

PURPOSE: Sets value of the IntegerTable.

ARGUMENTS: A pointer to a IntegerTable.

OTHER NOTES: Normally used by a run-time module generated using the
constructs-to-c function to install the IntegerTable.

SetSymbolTable

PURPOSE: Sets value of the SymbolTable.

ARGUMENTS: A pointer to a SymbolTable.

24 Symbol Manager Module

OTHER NOTES: Normally used by a run-time module generated using the
constructs-to-c function to install the SymbolTable.

INTERNAL FUNCTIONS

AddEphemeralFloat

PURPOSE: Adds a float to the EphemeralFloatList.

ARGUMENTS: A FloatTable entry.

OTHER NOTES: Typically called when a float is added to the FloatTable or
when a float's count value reaches zero.

AddEphemeralInteger

PURPOSE: Adds an integer to the EphemeralIntegerList.

ARGUMENTS: An IntegerTable entry.

OTHER NOTES: Typically called when an integer is added to the
IntegerTable or when an integer's count value reaches
zero.

AddEphemeralSymbol

PURPOSE: Adds a symbol to the EphemeralSymbolList.

ARGUMENTS: A SymbolTable entry.

OTHER NOTES: Typically called when a symbol is added to the
SymbolTable or when a symbol's count value reaches
zero.

RemoveEphemeralFloats

PURPOSE: Removes all ephemeral floats from the FloatTable that still
have a count value of zero and were created at a evaluation
depth greater than the current evaluation depth. Uses the
EphemeralFloatList to determine which floats to check.
Floats that have a count greater than zero are removed from
the EphemeralFloatList.

RemoveEphemeralIntegers

PURPOSE: Removes all ephemeral integers from the IntegerTable
that still have a count value of zero and were created at a
evaluation depth greater than the current evaluation depth.

CLIPS Architecture Manual 25

Uses the Ephemeral IntegerList to determine which
integers to check. Integers that have a count greater than
zero are removed from the EphemeralIntegerList.

RemoveEphemeralSymbols

PURPOSE: Removes all ephemeral symbols from the SymbolTable
that still have a count value of zero and were created at a
evaluation depth greater than the current evaluation depth.
Uses the EphemeralSymbolList to determine which
symbols to check. Symbols that have a count greater than
zero are removed from the EphemeralSymbolList.

RemoveFloat

PURPOSE: Removes a float from the FloatTable.

ARGUMENTS: A FloatTable entry.

RemoveInteger

PURPOSE: Removes an integer from the IntegerTable.

ARGUMENTS: An IntegerTable entry.

RemoveSymbol

PURPOSE: Removes a symbol from the SymbolTable.

ARGUMENTS: A SymbolTable entry.

26 Symbol Manager Module

Router Module

The Router Module (router.c) provides a level of indirection between low-level I/O
implementations and high-level requests for I/O. All high-level requests for I/O are di-
rected to logical names. The logical names are then associated with specific I/O
implementations. Changing the CLIPS interface using this technique is now made
very easy. To change the interface from a command line interface to a windowed
interface only requires reassociating the appropriate logical names with I/O
implementations for windows. High-level requests do not need to be changed. More
details of the I/O Router mechanism can be found in Section 7 of the Advanced
Programming Guide.

GLOBAL VARIABLES

CLIPSInputCount

PURPOSE: Integer used to keep track of the number of characters
currently entered while CLIPS is accepting input. Used by
some of the machine specific interfaces to prevent backing
over output (such as the CLIPS prompt) when input is being
deleted.

WCLIPS

PURPOSE: Global variable which can be used to refer to the wclips
logical name.

WDIALOG

PURPOSE: Global variable which can be used to refer to the wdialog
logical name.

WDISPLAY

PURPOSE: Global variable which can be used to refer to the wdisplay
logical name.

WERROR

PURPOSE: Global variable which can be used to refer to the werror
logical name.

WTRACE

PURPOSE: Global variable which can be used to refer to the wtrace
logical name.

CLIPS Architecture Manual 27

INTERNAL VARIABLES

Abort

PURPOSE: Boolean flag which indicates if the ExitCLIPS call should
be aborted without exiting CLIPS.

FastLoadFilePtr

PURPOSE: Variable which indicates whether I/O router system is to be
bypassed and input performed directly from a file.

C IMPLEMENTATION: If FastLoadFilePtr is NULL, regular I/O router procedure is
used. If FastLoadFilePtr is not NULL, it is the file pointer to
which I/O should be performed.

FastSaveFilePtr

PURPOSE: Variable which indicates whether I/O router system is to be
bypassed and output performed directly to a file.

C IMPLEMENTATION: If FastSaveFilePtr is NULL, regular I/O router procedure is
used. If FastSaveFilePtr is not NULL, it is the file pointer to
which I/O should be performed.

ListOfFileRouters

PURPOSE: List of all defined file routers. File routers provide a
mechanism for reading and writing to files. File routers are
created using the open command.

ListOfRouters

PURPOSE: List of all defined I/O routers.

C IMPLEMENTATION: Router structure has information on router name, priority,
boolean active flag, query function, print function, exit func-
tion, get character function, unget character function, and a
pointer to the next router. The routers are linked in order of
priority.

ListOfStringRouters

PURPOSE: List of all defined string routers. String routers provide a
mechanism for reading input from a string or writing output to
a string.

28 Router Module

GLOBAL FUNCTIONS

AbortExit

PURPOSE: Sets the value of the Abort flag to TRUE.

ActivateRouter

PURPOSE: Activates a specified router.

ARGUMENTS: Name of router.

AddRouter

PURPOSE: Adds an I/O router to the ListOfRouters. The router is
placed before routers with a lower priority and after routers
with a higher priority.

ARGUMENTS: Router name, priority, boolean active flag, query function,
print function, exit function, get character function, unget
character function.

OTHER NOTES: Routers are active when created.

CloseAllFiles

PURPOSE: Closes all opened files.

CloseFile

PURPOSE: Closes a file.

ARGUMENTS: The logical name associated with the file when opened with
OpenFile.

CloseStringDestination

PURPOSE: Closes a string output destination.

ARGUMENTS: Name of string router used when created with
OpenStringDestination.

CloseStringSource

PURPOSE: Closes a string input source.

ARGUMENTS: Name of string router used when created with
OpenStringSource.

CLIPS Architecture Manual 29

DeactivateRouter

PURPOSE: Deactivates a specified router.

ARGUMENTS: Name of router.

DeleteRouter

PURPOSE: Removes an I/O router from the ListOfRouters.

ARGUMENTS: Name of I/O router.

RETURNS: Boolean value. TRUE if the router was successfully deleted,
otherwise FALSE.

ExitCLIPS

PURPOSE: High-level CLIPS exit routine. Calls all router exit functions
before calling genexit function.

ARGUMENTS: Exit number.

FindFile

PURPOSE: Determines if a file which the specified logical name has
been opened.

ARGUMENTS: A logical name.

RETURNS: Boolean value. TRUE if a file with the specified logical name
has been opened, otherwise FALSE.

FindFptr

PURPOSE: Returns a pointer to an opened file.

ARGUMENTS: A logical name.

RETURNS: Boolean value. A pointer to the specified file, if found,
otherwise NULL.

GetcCLIPS

PURPOSE: High-level request function to get a character.

ARGUMENTS: Logical name from which character is requested.

RETURNS: A character.

30 Router Module

OTHER NOTES: Routine must check for FastLoadFilePtr and
FastSaveFilePtr.

GetFastLoad

PURPOSE: Returns the value of the variable FastLoadFilePtr.

GetFastSave

PURPOSE: Returns the value of the variable FastSaveFilePtr.

InitializeDefaultRouters

PURPOSE: Initializes the standard I/O routers used by CLIPS (file and
string).

OpenFile

PURPOSE: Opens a file for input or output by creating a file router.

ARGUMENTS: The name of the file, the mode in which the file is to be
opened (read, write, etc.), and the logical name to be
associated with the file.

OpenStringDestination

PURPOSE: Allows a string to be used as an output destination by
creating a string router.

ARGUMENTS: Name to be associated with the string router, the string to
which output is sent, and the maximum number of characters
that can be sent to the string.

RETURNS: Boolean value. TRUE if the string router was successfully
created, otherwise FALSE.

OpenStringSource

PURPOSE: Allows a string to be used as a source of input by creating a
string router.

ARGUMENTS: Name to be associated with the string router, the string from
which input is read, and the starting location within the string.

RETURNS: Boolean value. TRUE if the string router was successfully
created, otherwise FALSE.

CLIPS Architecture Manual 31

OpenTextSource

PURPOSE: Allows a string to be used as a source of input by creating a
string router. Since this function allows the maximum
number of characters which can be read from the string to
be specified, it is useful for reading from strings which are
not NULL terminated and for reading from a substring of a
string.

ARGUMENTS: Name to be associated with the string router, the string from
which input is read, the starting location within the string, and
the maximum number of characters which can be read from
the string.

RETURNS: Boolean value. TRUE if the string router was successfully
created, otherwise FALSE.

PrintCLIPS

PURPOSE: High-level request function to print a string.

ARGUMENTS: A string to print and the logical name to which the string is to
be printed.

OTHER NOTES: Routine must check for FastLoadFilePointer and
FastSaveFilePointer.

QueryRouters

PURPOSE: Determines if any router recognizes a logical name.

ARGUMENTS: Logical name.

RETURNS: Boolean value. TRUE if the logical name is recognized by
any router, otherwise FALSE.

SetFastLoad

PURPOSE: Sets value of the variable FastLoadFilePtr.

ARGUMENTS: Value to which FastLoadFilePtr is to be set.

SetFastSave

PURPOSE: Sets value of the variable FastSaveFilePtr.

ARGUMENTS: Value to which FastSaveFilePtr is to be set.

32 Router Module

UngetcCLIPS

PURPOSE: High-level request function to unget a character.

ARGUMENTS: Logical name to which character is ungotten and the char-
acter to unget.

OTHER NOTES: Routine must check for FastLoadFilePtr and
FastSaveFilePtr.

UnrecognizedRouterMessage

PURPOSE: A generic error message which can be printed when a
logical name is not recognized by any routers.

ARGUMENTS: The logical name which was unrecognized.

INTERNAL FUNCTIONS

CreateReadStringSource

PURPOSE: Drive routine for creating a string router for a string input
source.

ARGUMENTS: Name to be associated with the string router, the string from
which input is read, the starting location within the string, and
the maximum number of characters which can be read from
the string.

RETURNS: Boolean value. TRUE if the string router was successfully
created, otherwise FALSE.

File Router Functions

PURPOSE: Set of functions needed to handle file routers. Note that this
is not a single function but actually a series of functions.

QueryRouter

PURPOSE: Determines if a specific router recognizes a logical name.

ARGUMENTS: Logical name and an I/O router.

RETURNS: Boolean value. TRUE if the logical name is recognized by
the router, otherwise FALSE.

CLIPS Architecture Manual 33

String Router Functions

PURPOSE: Set of functions needed to handle string routers. Note that
this is not a single function but actually a series of functions.

34 Router Module

Scanner Module

The Scanner Module (scanner.c) “scans” input sources for tokens recognizable by
CLIPS. The scanner receives input from logical names as described in the Router
Module. The scanner returns token information in a data structure with several fields.
One field indicates the type of token. For example, the token 783 would have type
INTEGER, the token (would have type LEFT_PARENTHESIS, and the token "cat"
would have type STRING. Another field in the token structure supplies the data value
for tokens which have a data value. In the example above, "cat" would have a data
value of "cat" (which would be a pointer to the symbol entry for "cat" in the
SymbolTable). Note that the symbol cat would have the same data value as the
string "cat". In addition, tokens also have a printed representation. The token ?x, for
example, would have token type VARIABLE, data type "x", and printed representation
"?x".

CLIPS produces a formatted representation for every parsed command or
construct. Since this formatting process is closely linked with the scanner, the routines
for creating this “pretty print” representation are included in the Scanner Module and
directly called by the scanner routines. Every token that is read using the Scanner
Module is placed in the PrettyPrintBuffer unless the buffer has been disabled. The
buffer is normally disabled during execution of a knowledge base (it is not normally
desirable to format input read from a file).

GLOBAL VARIABLES

IgnoreCompletionErrors

PURPOSE: Boolean flag which indicates whether an error should be
signalled when a string is being scanned and an end-of-file
is encountered.

INTERNAL VARIABLES

GlobalMax

PURPOSE: The maximum number of characters which can be stored in
GlobalString.

GlobalPos

PURPOSE: The current number of characters stored in GlobalString.

GlobalString

PURPOSE: Buffer to store string data values for tokens.

CLIPS Architecture Manual 35

IndentationDepth

PURPOSE: Used by the pretty print functions to determine how many
spaces to indent when an indentation command is given.

PPBufferMax

PURPOSE: The maximum number of characters which can be stored in
PrettyPrintBuffer.

PPBufferPos

PURPOSE: The current number of characters stored in
PrettyPrintBuffer.

PrettyPrintBuffer

PURPOSE: Buffer to maintain a “pretty” representation of the current
command or rule being parsed. Also requires several vari-
ables to keep track of current position in buffer.

PPBackupOnce

PURPOSE: The position to which to backup in the PrettyPrintBuffer
the first time that PPBackup is called.

PPBackupTwice

PURPOSE: The position to which to backup in the PrettyPrintBuffer
the second time that PPBackup is called.

PPBufferStatus

PURPOSE: Boolean flag which indicates whether parsed tokens should
be stored in the PrettyPrintBuffer.

GLOBAL FUNCTIONS

CopyPPBuffer

PURPOSE: Makes a copy of the PrettyPrintBuffer.

RETURNS: A string copy of the PrettyPrintBuffer.

CopyToken

PURPOSE: Copies values of one token to another token.

36 Scanner Module

ARGUMENTS: Source token and target token.

RETURNS: Nothing. Values of the target token will be set to values of the
source token.

DecrementIndentDepth

PURPOSE: Decrements IndentationDepth for pretty printing.

ARGUMENTS: Value by which IndentationDepth is to be decremented.

DestroyPPBuffer

PURPOSE: Resets the state of the PrettyPrintBuffer to contain nothing
and returns the string associated with the pretty print
representation to the pool of free memory.

FlushPPBuffer

PURPOSE: Resets state of the PrettyPrintBuffer to contain nothing.

GetPPBuffer

PURPOSE: Returns a pointer to the PrettyPrintBuffer.

RETURNS: A pointer to the PrettyPrintBuffer.

GetPPBufferStatus

PURPOSE: Returns the value of the PPBufferStatus flag.

RETURNS: Boolean value.

GetToken

PURPOSE: Reads next token from the input stream.

ARGUMENTS: Logical name from which input is read and a pointer to a
token structure in which to store the scanned token.

RETURNS: Nothing. The pointer to the token data structure passed as
an argument is set to contain the type of token (e.g., symbol,
string, integer, etc.), the data value for the token (i.e., a
symbol table location if it is a symbol or string, an integer
table location if it is an integer), and the pretty print
representation.

CLIPS Architecture Manual 37

IncrementIndentDepth

PURPOSE: Increments IndentationDepth for pretty printing.

ARGUMENTS: Value by which IndentationDepth is to be incremented.

PPBackup

PURPOSE: Backs up past last appended string to the
PrettyPrintBuffer.

OTHER NOTES: Should only have to be capable of backing up over last two
appended strings.

PPCRAndIndent

PURPOSE: Prints a carriage return (CR) followed by a number of spaces
equal to the IndentationDepth of the PrettyPrintBuffer.

SavePPBuffer

PURPOSE: Appends a string to the end of the PrettyPrintBuffer.

ARGUMENTS: String to append to buffer.

SetIndentDepth

PURPOSE: Sets IndentationDepth for pretty printing.

ARGUMENTS: Value to which IndentationDepth is to be set.

SetPPBufferStatus

PURPOSE: Sets PPBufferStatus on or off.

ARGUMENTS: Boolean value. TRUE if PrettyPrintBuffer is to be turned
on; FALSE if PrettyPrintBuffer is to be turned off.

OTHER NOTES: PPBufferStatus should be on during rule or command
parse and off during rule execution.

StringPrintForm

PURPOSE: Generates printed representation of a string. Replaces / with
// and " with /".

ARGUMENTS: A string.

RETURNS: Printed representation of the string.

38 Scanner Module

INTERNAL FUNCTIONS

AppendStrings

PURPOSE: Appends two strings together.

ARGUMENTS: Two pointers to strings.

RETURNS: A pointer to a string created by appending the two strings
passed as arguments. The string is added to the
SymbolTable so it is not necessary to deallocate the string
returned.

ScanNumber

PURPOSE: Parses a number.

ARGUMENTS: Logical name from which input is read and a token data
structure to store the parsed value.

RETURNS: The parsed data value in the token structure passed as an
argument. The type of the token will either be an integer (in
which cause the value in the token will be an IntegerTable
entry), a float (in which cause the value in the token will be a
FloatTable entry), or a symbol otherwise (in which cause
the value in the token will be an SymbolTable entry). The
pretty print representation of the data value will also be
stored in the token.

OTHER NOTES: See the Basic Programming Guide for a detailed
explanation of the integer and float data types. Note that any
data value that first appears to be a number, but does not
satisfy the requirements of a number is treated as a symbol
(e.g. 37-A).

ScanString

PURPOSE: Parses a string.

ARGUMENTS: Logical name from which input is read.

RETURNS: SymbolTable entry for the string.

OTHER NOTES: See the Basic Programming Guide for a detailed
explanation of the string data type.

ScanSymbol

PURPOSE: Parses a symbol.

CLIPS Architecture Manual 39

ARGUMENTS: Logical name from which input is read, the number of char-
acters in the symbol that have already been placed in the
StringBuffer, and integer value for storing the symbol's
type (since a symbol may actually be an instance name).

RETURNS: SymbolTable entry for the symbol.

OTHER NOTES: See the Basic Programming Guide for a detailed
explanation of the symbol data type.

40 Scanner Module

Expression Module

The standard format used by CLIPS for expressions is very similar to a LISP format. In
general, expressions follow the format

(function-name arg1 arg2 ... argn)

where each argument may be an expression, a typeable primitive data type (symbol,
string, integer, float, or instance name, but not external address or instance), or a
variable (either local or global). The function name refers either to a system or user
defined function, a deffunction, or a generic function. All of the following would be valid
CLIPS expressions:

(facts)
(+ (* 3 (- ?x 3)) 6)
(str-cat "red" "blue")

The Expression Module (expressn.c) contains routines which parse expressions
into a format which, in most cases, is suitable for evaluation by the Evaluation Module
(evaluatn.c). It also checks that the first symbol found in a function call is a function
name. The parsing of constructs (such as defrule and deffacts) is handled by the
Constructs Module (constrct.c). In addition, the parsing of certain CLIPS expressions
which do not conform to the standard expression format are handled by the Special
Forms Module (spclform.c).

The data structure used to store each component of an expression consists of a
type field (such as SYMBOL or INTEGER), a value field (such as a pointer to a
SymbolTable entry), a pointer to an argument list (for functions), and a pointer to the
next argument in the argument list. For example, the following expression

(+ (* 3 (- 8.3 2) 11) 6.5)

would be represented as shown following (with down pointing arrows representing the
argument list pointers and right pointing arrows representing the next argument
pointer).

Function
-

Function
*

Function
+

Integer
3

Integer
2

Float
8.3

Float
6.5

Integer
11

CLIPS Architecture Manual 41

GLOBAL VARIABLES

None.

INTERNAL VARIABLES

FunctionHashTable

PURPOSE: Stores all of the system and user defined functions
registered with CLIPS by calling the function
DefineFunction. The functions entries are hashed in this
table so that any specified function can be retrieved quickly.

C IMPLEMENTATION: Implemented as an array. Each entry corresponds to a list of
function entry. Collisions are resolved by adding the function
entry to the list of entries.

ListOfFunctions

PURPOSE: Contains a linked list of all system and user defined
functions registered with CLIPS by calling the function
DefineFunction.

GLOBAL FUNCTIONS

AddFunctionParser

PURPOSE: Associates a specialized expression parsing function with
the function entry for a function which was defined using
DefineFunction. When this function is parsed, the
specialized parsing function will be called to parse the
arguments of the function. Only user and system defined
functions can have specialized parsing routines. Generic
functions and deffunctions can not have specialized parsing
routines.

ARGUMENTS: Name of function for which the parsing function is to be
applied, and a pointer to the parsing function.

AddHashFunction

PURPOSE: Adds a function entry to the FunctionHashTable.

ARGUMENTS: A function entry.

ArgumentParse

PURPOSE: Parses an argument within a function call expression.

42 Expression Module

ARGUMENTS: Logical name from which input is read, and a pointer to an
integer in which an error code is returned.

RETURNS: A pointer to an expression representing the next argument in
the function call. Note that this value may be null, indicating
that no further arguments exist. The error status is passed
back through the pointer to an integer passed as a
parameter.

CollectArguments

PURPOSE: Parses and groups together all of the arguments for a
function call expression by repeatedly calling
ArgumentParse.

ARGUMENTS: Logical name from which input is read a pointer to the
function call expression to which the arguments are to be
attached.

RETURNS: The pointer to the function call expression with its arguments
attached. If an error occurs, the function call expression is
returned to the pool of free memory and NULL is returned.

ConstantExpression

PURPOSE: Identifies expressions that are constants.

ARGUMENTS: An expression.

RETURNS: Returns TRUE if the expression is a constant (symbol, string,
integer, float, instance, or instance name), otherwise FALSE
is returned.

CopyExpression

PURPOSE: Copies an expression.

ARGUMENTS: Expression to be copied.

RETURNS: A copy of the expression.

CountArguments

PURPOSE: Returns the number of arguments associated with an
expression (i.e. how many arguments a function call has).

ARGUMENTS: An expression.

CLIPS Architecture Manual 43

RETURNS: Returns an integer value representing the number of
arguments found.

ExpressionContainsVariables

PURPOSE: Determines if an expression contains any variables.

ARGUMENTS: An expression and a boolean flag indicating whether global
variables should be considered as variables.

RETURNS: Returns TRUE if the expression contains any variables,
otherwise FALSE is returned.

ExpressionDeinstall

PURPOSE: Decrements count values for generic functions, deffunctions,
and constant values (such as symbols) for all such occur-
rences found in an expression.

ARGUMENTS: An expression.

ExpressionInstall

PURPOSE: Increments count values for generic functions, deffunctions,
and constant values (such as symbols) for all such occur-
rences found in an expression.

ARGUMENTS: An expression.

ExpressionSize

PURPOSE: Returns the total number of nodes contained in an
expression.

ARGUMENTS: An expression (packed or unpacked).

RETURNS: Returns an integer value representing the total number of
nodes in the expression.

Function0Parse

PURPOSE: Parses a function call. Assumes that none of the functions
has been parsed yet.

ARGUMENTS: Logical name from which input is read.

RETURNS: A pointer to an expression. Returns null if an error occurs.

44 Expression Module

Function1Parse

PURPOSE: Parses a function call. Assumes that the opening left paren-
thesis of the function has already been parsed.

ARGUMENTS: Logical name from which input is read.

RETURNS: A pointer to an expression. Returns null if an error occurs.

Function2Parse

PURPOSE: Parses a function call. This routine is able to distinguish
between system and user defined functions, deffunctions,
and generic functions. If the routine has a specialized
parsing routine, then that routine will be called by this routine
in place of the default argument parsing routine. This routine
assumes that the opening left parenthesis and the name of
the function have already been parsed.

ARGUMENTS: Logical name from which input is read and name of the
function to be parsed.

RETURNS: A pointer to an expression. Returns null if an error occurs.

FindFunction

PURPOSE: Determines if a function has been defined using the function
DefineFunction.

ARGUMENTS: A function name.

RETURNS: A pointer to the function entry if it exists, otherwise NULL.

GetFunctionList

PURPOSE: Returns the ListOfFunctions.

IdenticalExpression

PURPOSE: Determines if two expressions are identical.

ARGUMENTS: Two expressions.

RETURNS: Returns TRUE if the expressions are identical, otherwise
FALSE is returned.

CLIPS Architecture Manual 45

InstallFunctionList

PURPOSE: Sets the ListOfFunctions and adds all the function entries
to the FunctionHashTable.

ARGUMENTS: A linked list of function entries.

OTHER NOTES: Normally used by a run-time module generated using the
constructs-to-c function to install the list of functions used by
the module.

ListToPacked

PURPOSE: Copies a list of expressions to an array.

ARGUMENTS: A pointer to the expression list to be copied, a pointer to the
array to which the expression is to be copied, and an integer
index indicating the starting point in the array at which the
copying should begin.

RETURNS: The last array index into which the expression was copied.

PackExpression

PURPOSE: Copies an expression (created using multiple memory
requests) into an array (created using a single memory
request) while maintaining all appropriate links in the
expression. A packed expression requires less total memory
because it reduces the overhead required for multiple
memory allocations.

ARGUMENTS: The expression to be packed.

RETURNS: A copy of the expression packed into an array.

ParseAtomOrExpression

PURPOSE: Parses an expression which may be a function call, atomic
value (string, symbol, etc.), or variable (local or global).

ARGUMENTS: Logical name from which input is read.

RETURNS: A pointer to an expression. Returns NULL if an error occurs.

ParseConstantArguments

PURPOSE: Creates an argument list from a series of constants found in
a string.

46 Expression Module

ARGUMENTS: A string and a pointer to an integer.

RETURNS: A pointer to an expression. The integer passed as a
parameter is set to TRUE if an error occurs.

PrintExpression

PURPOSE: Prints an expression.

ARGUMENTS: An expression and the logical name to which output is to be
sent.

RemoveFunctionParser

PURPOSE: Removes a specialized expression parsing function (if it
exists) from the function entry for a function.

ARGUMENTS: Name of function whose parsing function is to be removed.

ReturnExpression

PURPOSE: Returns an expression to the memory manager.

ARGUMENTS: An expression.

OTHER NOTES: If expression was installed using InstallExpression it
should be deinstalled using DeinstallExpression before
this function is called.

ReturnPackedExpression

PURPOSE: Returns a packed expression created using
PackExpression to the memory manager.

ARGUMENTS: A packed expression.

OTHER NOTES: If expression was installed using InstallExpression it
should be deinstalled using DeinstallExpression before
this function is called.

SetFunctionList

PURPOSE: Sets the ListOfFunctions.

ARGUMENTS: A linked list of function entries.

CLIPS Architecture Manual 47

INTERNAL FUNCTIONS

InitializeFunctionHashTable

PURPOSE: Initializes the FunctionHashTable.

48 Expression Module

Special Forms Module

Some CLIPS expressions do not conform to the standard expression format. An
example of this type of expression is the assert:

(assert (data 35))

The subexpression found within the assert (data 35) is not a function call to be
evaluated but, rather, a piece of data for the assert function. Special parsing is
required to allow this format for the assert function. Many other functions such as if,
while, bind, and retract either transform the expression in some special way or perform
additional syntax checking on the expression format. These functions all require
special parsing.

Specialized parsing functions are responsible for constructing an appropriate ex-
pression representation, as well as for making the appropriate calls to the pretty print
routines to format the expression correctly for output.

GLOBAL VARIABLES

None.

INTERNAL VARIABLES

ListOfParsedBindNames

PURPOSE: Contains the list of variables encountered by parsing the
bind function.

GLOBAL FUNCTIONS

ClearParsedBindNames

PURPOSE: Clears the ListOfParsedBindNames returning all
structures to the pool of free memory.

GetParsedBindNames

PURPOSE: Returns the ListOfParsedBindNames.

InitializeSpecialForms

PURPOSE: Initializes specialized parsing functions for assert, bind, if,
while, and retract. Also initializes several parsing functions
for some math and predicate functions which provide
additional error checking for the arguments of these
functions.

CLIPS Architecture Manual 49

ParsedBindNamesEmpty

PURPOSE: Indicates if any bind names have been parsed.

RETURNS: Returns TRUE if the ListOfParsedBindNames is NULL,
otherwise FALSE.

SearchParsedBindNames

PURPOSE: Searches the ListOfParsedBindNames for a particular
variable name.

ARGUMENTS: A variable name.

RETURNS: Returns TRUE if the variable was found, otherwise FALSE.

SetParsedBindNames

PURPOSE: Sets the value of the ListOfParsedBindNames.

ARGUMENTS: A new list of parsed bind names.

INTERNAL FUNCTIONS

AssertParse

PURPOSE: Handles special parsing of assert expression.

ARGUMENTS: Logical name from which input is read, and a pointer to the
expression function call.

RETURNS: Expression representing the assert function (or NULL if an
error occurs).

AddBindName

PURPOSE: Adds a variable name to the ListOfParsedBindNames.

ARGUMENTS: Name of the variable.

BindParse

PURPOSE: Handles special parsing of bind expression.

ARGUMENTS: Logical name from which input is read, and a pointer to the
expression function call.

50 Special Forms Module

RETURNS: Expression representing the bind function (or NULL if an
error occurs).

CheckArgListParse

PURPOSE: Handles parsing for functions which require a specified
number of arguments of either numeric or non-numeric
values.

ARGUMENTS: Logical name from which input is read, a pointer to the
expression function call, an integer representing the
restriction on the arguments (EXACTLY, AT_LEAST,
NO_MORE_THAN, etc.), the number of arguments to which
the restriction applies, and a boolean value indicating
whether the arguments must be numeric.

RETURNS: Expression representing the parsed function (or NULL if an
error occurs).

IfParse

PURPOSE: Handles special parsing of if expression.

ARGUMENTS: Logical name from which input is read, and a pointer to the
expression function call.

RETURNS: Expression representing the if function (or NULL if an error
occurs).

MultiArgNumericParse

PURPOSE: Handles parsing for functions which require at least two
numeric arguments. Currently used by the following
functions: +, * , - , /, <=, >=, <, >, =, <>, min, and max.

ARGUMENTS: Logical name from which input is read, and a pointer to the
expression function call.

RETURNS: Expression representing the parsed function (or NULL if an
error occurs).

MultiArgParse

PURPOSE: Handles parsing for functions which require at least two
arguments. Currently used by the following functions: and
and or.

ARGUMENTS: Logical name from which input is read, and a pointer to the
expression function call.

CLIPS Architecture Manual 51

RETURNS: Expression representing the parsed function (or NULL if an
error occurs).

NotParse

PURPOSE: Handles parsing for functions which require exactly one
argument. Currently used by the not function.

ARGUMENTS: Logical name from which input is read, and a pointer to the
expression function call.

RETURNS: Expression representing the parsed function (or NULL if an
error occurs).

RetractParse

PURPOSE: Handles special parsing of retract expression.

ARGUMENTS: Logical name from which input is read, and a pointer to the
expression function call.

RETURNS: Expression representing the retract function (or NULL if an
error occurs).

WhileParse

PURPOSE: Handles special parsing of while expression.

ARGUMENTS: Logical name from which input is read, and a pointer to the
expression function call.

RETURNS: Expression representing the while function (or NULL if an
error occurs).

52 Special Forms Module

Parser Utility Module

The Parser Utility Module (parsutil.c) provides a number of function which perform
various parsing tasks.

GLOBAL VARIABLES

None.

INTERNAL VARIABLES

None.

GLOBAL FUNCTIONS

BuildRHSAssert

PURPOSE: Parses one or more RHS pattern and creates an assert
command from the patterns.

ARGUMENTS: A pointer to an assert function call expression (which will be
converted to a progn if more than one pattern is to be
asserted), logical name from which input is read, a boolean
flag indicating if opening right parenthesis of the first RHS
pattern has already been parsed, and a pointer to a boolean
flag which indicates if a parsing error occurred.

RETURNS: A pointer to an expression (NULL if an error was
encountered). The parsing error flag is always set to either
TRUE or FALSE by this routine.

CompactActions

PURPOSE: Converts a progn function call expression to a simpler
format if it contains less than two arguments. A progn with
no arguments if converted to an expression containing the
symbol FALSE. A progn with a single argument is
converted to an expression containing the single argument.

ARGUMENTS: A pointer to an expression.

RETURNS: A pointer to an expression.

GetAssertArgument

PURPOSE: Parses a single argument for use within an assert command
(e.g. a single symbol or variable).

CLIPS Architecture Manual 53

ARGUMENTS: Logical name from which input is read, a pointer to a token
structure in which scanned tokens are placed, a pointer to a
boolean flag which indicates whether a multifield value was
parsed, a pointer to a boolean flag which indicates if a
parsing error occurred, the type of token which indicates that
no more assert arguments are available (e.g. a right
parenthesis), a boolean flag indicating if only constants are
allowed to be parsed, and a boolean flag indicating whether
an error message should be printed by the calling function
when an error is detected by this function.

RETURNS: A pointer to an expression. The multifield flag and error flag
are set to TRUE if a multifield or error is encountered while
parsing. The print error message flag is always set to either
TRUE or FALSE by this routine.

GetConstructNameAndComment

PURPOSE: Parses the name and comment fields of a construct. If the
construct is being redefined, then the current definition of the
construct is deleted. If compilations are being watched then
this function will print out an informational message,
otherwise a single character is printed to indicate a new
construct is being defined.

ARGUMENTS: Logical name from which input is read, a pointer to a token
structure in which scanned tokens are placed, the name of
the construct type being parsed (e.g. defrule), a pointer to a
function which will delete the construct in case the parsed
construct is being redefined, the character symbol which is
printed to indicate a construct is being defined (e.g. '*' for
defrule), and a boolean flag indicating if a carriage return
should be printed after the long informational message when
compilations are being watched.

RETURNS: The name of the construct being parsed.

GetRHSPattern

PURPOSE: Parses the type of pattern typically encountered on the RHS
of a rule for functions such as assert and modify, but can
also be found in constructs such as deffacts. A RHS pattern
consists of a left parenthesis, followed by one or more
primitive data types or variables, followed by a right
parenthesis. The fields in the RHS pattern may also be
specified using a deftemplate format.

ARGUMENTS: Logical name from which input is read, a pointer to a token
structure in which scanned tokens are placed, a pointer to a

54 Parser Utility Module

boolean flag which indicates whether a multifield value was
parsed, a pointer to a boolean flag which indicates if a
parsing error occurred, a boolean flag indicating if only
constants are allowed to be parsed, a boolean flag
indicating if opening right parenthesis of the RHS pattern
has already been parsed, and the type of token which
indicates the end of the RHS pattern (e.g. a right
parenthesis).

RETURNS: A pointer to an expression. The multifield flag and error flag
are set to TRUE if a multifield or error is encountered while
parsing.

OTHER NOTES: Primarily uses the function GetAssertArgument to parse
an ordered fact and the function ParseAssertTemplate to
parse a deftemplate fact.

GroupActions

PURPOSE: Parses a series of actions and groups them together in a
progn command.

ARGUMENTS: Logical name from which input is read, a pointer to a token
structure in which scanned tokens are placed, a boolean flag
indicating if first token of the group of actions has already
been parsed, and the string representation of the type of
token which indicates the end of the group of actions (in
addition to a right parenthesis).

RETURNS: A pointer to an expression (NULL if an error was
encountered).

ReadUntilClosingParen

PURPOSE: Scans tokens until a matching closing right parenthesis is
found. This function assumes that an opening left
parenthesis has already been parsed before the function
was called and verifies that each left parenthesis
encountered has a matching right parenthesis.

ARGUMENTS: Logical name from which input is read and a pointer to a
token structure in which scanned tokens are placed.

RETURNS: Boolean value. TRUE if the closing right parenthesis was
found, otherwise FALSE.

INTERNAL FUNCTIONS

None.

CLIPS Architecture Manual 55

56 Parser Utility Module

Evaluation Module

The Evaluation Module (evaluatn.c) provides a set of functions for evaluating expres-
sions. In addition, functions for defining functions and accessing the argument values
of expressions are provided.

In versions of CLIPS previous to version 5.0, garbage collection was simplified by
that fact that it could be performed on rule firing boundaries. Symbols and other data
structures created by the evaluation of expressions could be checked at the end of
each rule firing to determine if they could be garbage collected. Version 5.0 of CLIPS,
however, introduced object-oriented and procedural programming paradigms. It is
now possible to have a CLIPS program which contains no rules at all. Thus, it is no
longer sufficient to perform garbage collection only on rule boundaries. Garbage
collection of symbols and other ephemeral data structures can now occur at the
completion of each rule, deffunction, generic function, or message-handler that is
executed.

Because rule firings, function calls, and message passing can be nested many
levels deep, it is necessary to associate an “evaluation depth” with each ephemeral
data structure that is created. This evaluation depth indicates the levels of unnesting
that must occur before a particular data structure can be garbage collected. For
example, if function foo calls function bar which in turn calls function yak, then data
structures created through the evaluation of expressions in function foo would have an
evaluation depth of 1. Similarly, expression evaluation results in function bar would
have an evaluation depth of 2 and results from function yak would have an evaluation
depth of 3. Ephemeral data structures created at a depth of 3 could be garbage
collected upon return to either function foo or bar. Similarly, data structures created at
a depth of 2 could be garbage collected upon return to function foo and the data
structures created by foo could be garbage collected once foo was exited.

GLOBAL VARIABLES

None.

INTERNAL VARIABLES

BindList

PURPOSE: A linked list of the local variables that are dynamically
allocated by the bind command for a given evaluation
depth. Any routine which increments the
CurrentEvaluationDepth value must store the old value
of the BindList and restore this value when the
CurrentEvaluationDepth is decremented.

CurrentEvaluationDepth

PURPOSE: The current “depth” of evaluation. This value is used for the
purposes of garbage collection. At the beginning of the
execution of each rule, deffunction, generic function, or
message-handler, this value is incremented by one. At the

CLIPS Architecture Manual 57

completion of the execution of each rule, deffunction, generic
function, or message-handler, this value is decremented by
one. Note that the execution of a system or user-defined
function does not affect this value.

EvaluationError

PURPOSE: Boolean flag which indicates if an error has occurred while
evaluating an expression.

HaltExecution

PURPOSE: Boolean flag which indicates if execution (rules, certain
functions such as while, deffunctions, etc.) should be halted.

CurrentExpression

PURPOSE: As expressions are evaluated, maintains list of arguments for
each expression evaluation.

GLOBAL FUNCTIONS

Argument Access Functions

PURPOSE: A series of functions which allows access to the arguments
of an expression. Some access functions are implemented
as macros. The following are access functions implemented
as functions: RtnArgCount, ArgCountCheck,
ArgTypeCheck, RtnLong, RtnUnknown, RtnLexeme,
RtnDouble, and ArgRangeCheck. See the Advanced
Programming Guide for further details.

CLIPSFunctionCall

PURPOSE: Allows functions external to CLIPS to execute function calls.
See the Advanced Programming Guide for further details.

DefineFunction

PURPOSE: Defines a function to be accessible to CLIPS.

ARGUMENTS: Function access name, pointer to the function, type of return
value, and actual function name.

EvaluateExpression

PURPOSE: Evaluates an expression.

58 Evaluation Module

ARGUMENTS: An expression to evaluate, and a pointer to a data structure
in which to return a value.

RETURNS: The current value of EvaluationError. The return value of
the expression is stored in the data structure.

GetBoundVariable

PURPOSE: Searches the BindList for a specified variable.

ARGUMENTS: The name of the variable and a pointer to a DATA_OBJECT
structure in which to store variable, if found.

RETURNS: A boolean value. TRUE if the variable was found, otherwise
FALSE.

GetEvaluationError

PURPOSE: Returns the EvaluationError flag.

GetHaltExecution

PURPOSE: Returns the HaltExecution flag.

PrintDataObject

PURPOSE: Prints a DATA_OBJECT structure to the specified logical
name.

ARGUMENTS: A pointer to a DATA_OBJECT structure and a logical name.

PropagateReturnValue

PURPOSE: Decrements the associated depth for a value stored in a
DATA_OBJECT structure. In effect, the values returned by
certain evaluations (such as a deffunction call) are passed
up to the previous depth of evaluation. The return value's
depth is decremented so that it will not be garbage collected
along with other items that are no longer needed from the
evaluation that generated the return value.

ARGUMENTS: A pointer to a DATA_OBJECT structure.

ReturnValues

PURPOSE: Returns a linked list of DATA_OBJECT structures to the pool
of free memory.

ARGUMENTS: A pointer to the head DATA_OBJECT structure in a list.

CLIPS Architecture Manual 59

Return Value Access Functions

PURPOSE: A series of functions which allows access to the return value
data structures. Most of these access functions are
implemented as macros. See the Advanced Programming
Guide for further details.

SetEvaluationError

PURPOSE: Sets the EvaluationError flag.

ARGUMENTS: A boolean value (the new value of the flag). If the value of
the flag is TRUE, then the HaltExecution flag is also set to
TRUE.

SetHaltExecution

PURPOSE: Sets the HaltExecution flag.

ARGUMENTS: A boolean value (the new value of the flag).

SetMultifieldErrorValue

PURPOSE: Creates a multifield value of length zero for error returns.

ARGUMENTS: A pointer to a DATA_OBJECT structure in which the error
value is to be stored.

ValueDeinstall

PURPOSE: Decrements the appropriate count (in use) values for a
DATA_OBJECT structure.

ARGUMENTS: A pointer to a DATA_OBJECT structure.

ValueInstall

PURPOSE: Increments the appropriate count (in use) values for a
DATA_OBJECT structure.

ARGUMENTS: A pointer to a DATA_OBJECT structure.

INTERNAL FUNCTIONS

NonexistantError

PURPOSE: Prints the error message for a nonexistant argument.

60 Evaluation Module

ARGUMENTS: The name of the access function which couldn’t find the
argument, the name of the function which called the access
function, and the index position of the argument requested.

WrongTypeError

PURPOSE: Prints the error message for the wrong type of argument.

ARGUMENTS: The name of the access function which couldn’t find the
argument, the name of the function which called the access
function, and the name of the type expected.

CLIPS Architecture Manual 61

Command Line Module

The Command Line Module (commline.c) contains the basic functions for setting up a
simple command line processor for CLIPS commands.

Command line routines are oriented for building interfaces that use an event-driven
philosophy. These interfaces have windows, menus, and/or command entry windows.
In an event-driven interface, keyboard input is just one of several possible events. If a
key is pressed, it is placed in an input buffer. The input buffer will not be processed
until a complete command has been entered. In CLIPS, commands are delimited by a
set of matching parentheses. In addition, commands may also be variables or
constants. During entry to the input buffer, other events such as menu selections can
also be processed because CLIPS has not yet begun to process the input command.

The basic input buffer to CLIPS should be used for accepting keyboard entry. File
entry should be permitted to lock out other events. In effect, menu commands cannot
be accessed during the loading of a file. The file loading operation represents a com-
plete event by itself whereas a single keyboard character entry is a single event.

The basic command loop for CLIPS works as follows:

procedure CommandLoop
 print the CLIPS prompt
 do forever
 call EventFunction
 if a complete command is in the input buffer then
 perform the command
 clear the input buffer
 print the CLIPS prompt
 end if
 end do
end procedure

Notice that the loop calls the EventFunction procedure repeatedly. The com-
mand is executed only when the CompleteCommand function indicates that a
complete command is waiting in the input buffer. A typical EventFunction procedure
for a non-windowed interface would be

procedure GenericEventFunction
 get a character from the keyboard
 stuff the character into the input buffer
end procedure

The only event possible is to grab a character which is then stuffed into an input
buffer. If a command has been completed, the CompleteCommand function returns a
non-zero value. Simple modifications to this basic function allow for the easy operation
of a windowed interface as shown following.

CLIPS Architecture Manual 63

procedure WindowEventFunction
 get the next event
 if the event is a key press then
 stuff the character into the input buffer
 else if the event is a menu selection
 execute the menu selection
 else if the event is a window operation
 execute the window operation
 end if
end procedure

In this function, a routine is used to get the next event. Depending upon the exact
nature of the event, different actions are taken. This type of setup will allow the user to
begin entering a command, browse the data base using menu options, and then finish
entering the command.

GLOBAL VARIABLES

EvaluatingTopLevelCommand

PURPOSE: Boolean flag which indicates whether a top-level command
is currently being executed.

INTERNAL VARIABLES

CommandString

PURPOSE: Input buffer for the command string being formed.

EventFunction

PURPOSE: A pointer to the function to be called to process the next
event.

MaximumCharacters

PURPOSE: Current maximum length of the CommandString.

MemoryStatusFunction

PURPOSE: A pointer to a function which is periodically called during the
command loop to allow the interface to update a display
which indicates the amount of memory used by CLIPS.

ParsingTopLevelCommand

PURPOSE: Boolean flag which indicates whether a top-level command
is currently being parsed.

64 Command Line Module

VersionString

PURPOSE: The character string that is printed when CLIPS first starts
indicating the CLIPS version number and date of creation.

GLOBAL FUNCTIONS

AppendCommandString

PURPOSE: Appends a value to the contents of the CommandString.

ARGUMENTS: A string.

CommandLoop

PURPOSE: Endless loop which waits for user commands and then
executes them. The command loop will bypass the
EventFunction if there is an active batch file.

CompleteCommand

PURPOSE: Determines whether a string forms a complete command. A
complete command is either a constant, a variable, or a
function call which is followed (at some pointer) by a
carriage return. Once a complete command is found (not
including the parenthesis), extraneous parenthesis and
other tokens are ignored.

ARGUMENTS: A string.

RETURNS: Integer value. 1 if the string forms a complete command
without errors, 0 if the string forms an incomplete command
without errors, and -1 if the string has errors (e.g., the
command begins with a right parenthesis).

OTHER NOTES: Implemented as several functions.

ExpandCommandString

PURPOSE: Appends a character to the CommandString.

ARGUMENTS: Character to be appended. This routine properly handles the
backspace character by removing a character from the
CommandString.

FlushCommandString

PURPOSE: Empties the contents of the CommandString.

CLIPS Architecture Manual 65

GetCommandString

PURPOSE: Returns a pointer to the contents of the CommandString.

RETURNS: Current CommandString.

PrintPrompt

PURPOSE: Prints the CLIPS command prompt.

RouteCommand

PURPOSE: Processes a completed command.

ARGUMENTS: A command string.

RETURNS: Boolean value. TRUE if the command was successfully
executed, otherwise FALSE.

OTHER NOTES: Creates a string router with its command string argument
and then calls the appropriate parsing and execution
functions to process the command.

SetCommandString

PURPOSE: Sets the contents of the CommandString to a specific
value.

ARGUMENTS: A string.

OTHER NOTES: Flushes current contents of the CommandString.

SetEventFunction

PURPOSE: Replaces the current value of EventFunction.

ARGUMENTS: A pointer to the new event-handling function.

RETURNS: A pointer to the old event-handling function.

SetMemoryStatusFunction

PURPOSE: Replaces the current value of MemoryStatusFunction.

ARGUMENTS: A pointer to the new memory status function.

TopLevelCommand

PURPOSE: Indicates whether a top-level command is being parsed.

66 Command Line Module

RETURNS: Returns the value of ParsingTopLevelCommand.

INTERNAL FUNCTIONS

DefaultGetNextEvent

PURPOSE: Default event-handling function. Handles only keyboard
events by first calling GetcCLIPS to get a character and
then calling ExpandCommandString to add the character
to the CommandString.

DoComment

PURPOSE: Skips over a comment contained within a string until a line
feed or carriage return is encountered.

ARGUMENTS: A pointer to a string and an integer representing the position
of the character in the string currently being scanned.

RETURNS: An integer. The character position in the string where the
comment terminates.

DoString

PURPOSE: Skips over a string contained within a string until the closing
quotation mark is encountered.

ARGUMENTS: A pointer to a string, an integer representing the position of
the character in the string currently being scanned, and a
pointer to an integer flag which indicates if the closing
quotation mark was actually encountered.

RETURNS: An integer. The character position in the string where the
string terminates. If the string is terminated by a quotation
mark then the integer flag passed as an argument is set to
TRUE, otherwise the flag is set to FALSE.

DoWhiteSpace

PURPOSE: Skips over white space consisting of spaces, tabs, and form
feeds that is contained within a string.

ARGUMENTS: A pointer to a string and an integer representing the position
of the character in the string currently being scanned.

RETURNS: An integer. The character position in the string where the
white space terminates.

CLIPS Architecture Manual 67

Construct Manager Module

Several defining constructs appear in CLIPS: defrule, deffacts, deftemplate,
defglobal, deffunction, defclass, definstances, defmessage-handler,
defgeneric, and defmethod. The Construct Manager Module (constrct.c) handles a
variety of operations generic to these constructs.

GLOBAL VARIABLES

None.

INTERNAL VARIABLES

BeforeClearFunction

PURPOSE: Contains a pointer to a function which is to be called before
the clear command is executed (if this variables is not
NULL). If the function returns FALSE, the clear command is
not performed.

BeforeResetFunction

PURPOSE: Contains a pointer to a function which is to be called before
the reset command is executed (if this variables is not
NULL). If the function returns FALSE, the reset command is
not performed.

Executing

PURPOSE: Boolean flag. If TRUE, indicates that a construct is being
executed.

ListOfClearFunctions

PURPOSE: Contains a list of functions to be called whenever a clear
command is issued.

ListOfConstructs

PURPOSE: Contains the list of constructs recognized by CLIPS along
with pointers to the functions which parse each construct.

ListOfResetFunctions

PURPOSE: Contains a list of functions to be called when a reset is per-
formed.

CLIPS Architecture Manual 69

ListOfSaveFunctions

PURPOSE: Contains list of functions to be called whenever a save
command is issued.

PrintWhileLoading

PURPOSE: Boolean flag. If on, then loading information will be printed
during the loading of constructs. If off, then no loading
information is printed. The top-level load command enables
this flag (and either single characters or a more lengthy
message will be printed for each construct depending upon
the value of WatchCompilations). The embedded
LoadConstructs function does not set this flag and thus by
default messages will not be printed when this routine is
called.

WatchCompilations

PURPOSE: Boolean flag. If on, indicates that the progress of construct
definitions should be displayed.

GLOBAL FUNCTIONS

AddClearFunction

PURPOSE: Adds a function to the ListOfClearFunctions.

ARGUMENTS: A name to be associated with the function, a pointer to the
function, and the priority of the clear item.

AddConstruct

PURPOSE: Adds a construct and its associated parsing function to the
ListOfConstructs.

ARGUMENTS: Name of construct for which the parsing function is to be
applied, and a pointer to the parsing function.

AddResetFunction

PURPOSE: Adds a function to ListOfResetFunctions.

ARGUMENTS: A name to be associated with the function, a pointer to the
function, and the priority of the reset item.

70 Construct Manager Module

AddSaveFunction

PURPOSE: Adds a function to the ListOfSaveFunctions.

ARGUMENTS: A name to be associated with the function and a pointer to
the function.

CallClearFunctions

PURPOSE: Calls all clear functions in the ListOfClearFunctions.

ClearCLIPS

PURPOSE: Clears the CLIPS environment. See the Basic Programming
Guide for details on the effects of a clear.

OTHER NOTES: Calls the BeforeClearFunction, then each function in the
ListOfClearFunctions in order of descending priority.

ExecutingConstruct

PURPOSE: Returns the value of Executing.

GetCompilationsWatch

PURPOSE: Returns the value of WatchCompilations.

GetPrintWhileLoading

PURPOSE: Returns the value of PrintWhileLoading.

InitializeConstructs

PURPOSE: Initializes the Construct Manager.

InitializeIgnoredConstructs

PURPOSE: Initializes some parsing routines for skipping over CRSV
constructs not handled by CLIPS such as defrelation and
defexternal.

LoadConstructs

PURPOSE: Loads a set of constructs into the current CLIPS environment
from a file.

ARGUMENTS: A file name.

CLIPS Architecture Manual 71

OTHER NOTES: Converts file name to a logical name and calls function
LoadConstructsFromLogicalName.

LoadConstructsFromLogicalName

PURPOSE: Loads a set of constructs into the current CLIPS environment
from a specified logical name.

ARGUMENTS: A logical name.

OTHER NOTES: Calls function ParseConstruct to read in each construct.

ParseIgnoredConstruct

PURPOSE: Parsing routine for skipping over constructs recognized, but
not handled by CLIPS (such as CRSV constructs).

ARGUMENTS: Logical name from which input is read.

ParseConstruct

PURPOSE: Parses a construct.

ARGUMENTS: Name of construct to be parsed, and a logical name from
which input is to be read.

RETURNS: An integer. -1 if the construct name has no parsing function,
0 if the construct was parsed successfully, and 1 if the con-
struct was parsed unsuccessfully.

OTHER NOTES: Construct parsing functions should return a value of 0 if the
construct is parsed successfully and a value of 1 if the con-
struct is not parsed successfully.

RemoveClearFunction

PURPOSE: Removes a function from the ListOfClearFunctions.

ARGUMENTS: Name associated with the function.

RemoveConstruct

PURPOSE: Removes a construct and its associated parsing function
from the ListOfConstructs.

ARGUMENTS: Name of construct to be removed.

72 Construct Manager Module

RemoveResetFunction

PURPOSE: Removes a function from the ListOfResetFunctions.

ARGUMENTS: Name associated with reset function.

RemoveSaveFunction

PURPOSE: Removes a function from the ListOfSaveFunctions.

ARGUMENTS: Name associated with function.

ResetCLIPS

PURPOSE: Resets the CLIPS environment. See the Basic Programming
Guide for details on the effects of a reset.

OTHER NOTES: Calls the BeforeResetFunction, then each function in the
ListOfResetFunctions in order of descending priority.

SaveConstructs

PURPOSE: Saves the constructs currently in the CLIPS environment to a
file. This function is the primary routine called by the save
command.

ARGUMENTS: The name of the file to which constructs should be saved.

OTHER NOTES: Opens the specified file then calls each function in the
ListOfSaveFunctions.

SetBeforeClearFunction

PURPOSE: Sets the value of BeforeClearFunction.

ARGUMENTS: A pointer to a function.

SetBeforeResetFunction

PURPOSE: Sets the value of BeforeResetFunction.

ARGUMENTS: A pointer to a function.

SetCompilationsWatch

PURPOSE: Sets the value of WatchCompilations.

ARGUMENTS: A boolean value (TRUE or FALSE).

CLIPS Architecture Manual 73

SetExecutingConstruct

PURPOSE: Sets the value of Executing.

ARGUMENTS: A boolean value (TRUE or FALSE).

SetPrintWhileLoading

PURPOSE: Sets the value of PrintWhileLoading.

ARGUMENTS: A boolean value (TRUE or FALSE).

ValidConstruct

PURPOSE: Determines whether a construct is in the ListOfConstructs.

ARGUMENTS: Name of the construct.

RETURNS: Boolean value. TRUE if the construct has a parsing function;
otherwise FALSE.

INTERNAL FUNCTIONS

ErrorAlignment

PURPOSE: Positions the parser at a token which indicates the beginning
of a valid construct. If called as the result of an error in a
construct, this routine skips over tokens until it finds the
beginning of a new construct. If an error hasn't occurred,
then this routine checks to see that the parser is currently at
the beginning of a new construct (a left parenthesis followed
by a constructs name).

ARGUMENTS: Logical name from which input was being read when an
error was detected, a boolean value indicating whether an
error has occurred, and a pointer to a data structure in which
parsed tokens can be stored.

74 Construct Manager Module

Utility Module

The Utility Module (utility.c) contains a number of generally useful functions including
functions for printing primitive data types, constructing string representations of
primitive data types, appending characters and strings to other strings, checking
argument types, printing generic error and informational messages, adding and
manipulating items that can be watched using the watch command, and performing
periodic garbage collection.

The method CLIPS uses to perform periodic garbage collection merits some
discussion. Garbage collection and ephemeral “items” have already been discussed
to some extent as they relate to the Symbol Module (symbol.c) and the Evaluation
Module (evaluatn.c). Garbage within CLIPS comes in several varieties. The first variety
is garbage that can be immediately discarded when it is no longer in use. As an
example of this, consider the following command sequence.

CLIPS> (open "temp.txt" temp "w")
TRUE
CLIPS> (printout temp "Hello World" crlf)
CLIPS> (close temp)
TRUE
CLIPS>

When the file "temp.txt" is opened using the open command, data structures are
allocated which associate the logical name temp with the newly opened file. When the
close command is used to close the file, the data structure previously allocated are no
longer needed and can be immediately returned to the pool of free memory. In this
case, garbage collection occurs for the data structures at the same time the garbage is
created. Deleting constructs is another example of this type of garbage collection since
the memory used by these constructs is almost always immediately returned to the
pool of free memory (with some exceptions such as deleting an executing rule).

The second type of garbage collection occurs when an item appears to be garbage
(but it cannot yet be determined), or an item is garbage but is temporarily being
referred to by another data structure. As an example of this, consider the following
command sequence.

CLIPS> (assert (colors red green))
CLIPS>
(defrule remove-fact
 ?f <- (colors ?x ?y)
 =>
 (retract ?f)
 (printout t "Colors: " ?x " " ?y crlf))
CLIPS> (run)
CLIPS>

When the fact (color red green) is retracted by the remove-fact rule, the symbols red
and green become garbage since they are no longer permanently referred to by any
data structure. However, these values are still needed for the printout command which

CLIPS Architecture Manual 75

follows the retract command so the values cannot be garbage collected just yet. Once
the rule has completed execution the values can be safely garbage collected.

Garbage collection can occur at the completion of each rule, deffunction, generic
function, or message-handler that is executed, however, it does not always occur each
time one of these boundaries is encountered. CLIPS uses some heuristics to
determine if garbage collection should actually take place. First, either the size of
number of items subject to garbage collection must exceed a specified value. That is,
CLIPS will not garbage collect to reclaim 120 bytes of memory. Second, if garbage
collection does not free enough memory at a specified evaluation depth, then garbage
collection at that depth will not be repeated until a larger amount of garbage has been
created. This prevents garbage collection from being repeatedly attempted on items
that cannot yet be freed.

GLOBAL VARIABLES

AddressesToStrings

PURPOSE: Boolean flag which indicates whether addresses (external,
fact, or instance) should be printed using the notation for
addresses or should be printed with quotes surrounding
them. This is used by functions such as save-facts which
are not capable of reloading addresses and so must convert
the addresses to a safe form.

CurrentEphemeralCountMax

PURPOSE: The current maximum number of ephemeral items allowed
before periodic garbage collection is attempted.

CurrentEphemeralSizeMax

PURPOSE: The current maximum amount of memory used by
ephemeral items before periodic garbage collection is
attempted.

EphemeralItemCount

PURPOSE: The current number of “items” that can be potentially
garbage collected.

EphemeralItemSize

PURPOSE: The amount of memory used by all of the “items” the can be
potentially garbage collected.

76 Utility Module

PreserveEscapedCharacters

PURPOSE: Boolean flag which indicates whether the backslash escape
character should be reembedded within a string when the
string is printed.

INTERNAL VARIABLES

ListOfCleanupFunctions

PURPOSE: Contains a list of functions to be called when a periodic
cleanup is performed.

ListOfPeriodicFunctions

PURPOSE: Contains a list of functions to be called when a periodic
cleanup is checked. These function are always called
whenever PeriodicCleanup is called. The
ListOfCleanupFunction is only called if the cleanup
heuristics indicate that a periodic cleanup should be
performed. These functions are useful for updating displays
or checking for events in machine specific interfaces layered
on top of the CLIPS kernel.

ListOfWatchItems

PURPOSE: Contains a list of structures that represent the items that can
be watched using the watch command.

GLOBAL FUNCTIONS

AddCleanupFunction

PURPOSE: Adds a function to the ListOfCleanupFunctions.

ARGUMENTS: A name to be associated with the function, a pointer to the
function, and the priority of the cleanup item.

AddPeriodicFunction

PURPOSE: Adds a function to the ListOfPeriodicFunctions.

ARGUMENTS: A name to be associated with the function, a pointer to the
function, and the priority of the periodic item.

CLIPS Architecture Manual 77

AddWatchItem

PURPOSE: Adds a watch item to the ListOfWatchItems.

ARGUMENTS: The name of the watch item, a pointer to the integer in which
the watch item's value is stored, and the priority of the watch
item.

AppendNToString

PURPOSE: Appends a specified number of characters from one string to
another. Expands the appended string, if necessary, to
create enough space.

ARGUMENTS: A pointer to the appending string, a pointer to the string to be
appended, a pointer to the current length of the appended
string, a pointer to the maximum length that the appended
string can contain, and the maximum number of characters
that are to be appended to the string.

RETURNS: The new appended string. The string that is appended may
be dynamically reallocated to create a larger string. The
current length and maximum length values are updated by
this routine.

AppendToString

PURPOSE: Appends one string to another. Expands the appended
string, if necessary, to create enough space.

ARGUMENTS: A pointer to the appending string, a pointer to the string to be
appended, a pointer to the current length of the appended
string, and a pointer to the maximum length that the
appended string can contain.

RETURNS: The new appended string. The string that is appended may
be dynamically reallocated to create a larger string. The
current length and maximum length values are updated by
this routine.

AtomDeinstall

PURPOSE: Decrements the count value for a single primitive data type.

ARGUMENTS: The type of the primitive data type and the value of the
primitive data type.

78 Utility Module

AtomInstall

PURPOSE: Increments the count value for a single primitive data type.

ARGUMENTS: The type of the primitive data type and the value of the
primitive data type.

GetConstructName

PURPOSE: Checks for an appropriate symbolic name as the argument
to a function call during run-time. Used by functions such as
ppdefrule and undefrule which require a symbolic value
as the name of a defrule. A name must be a symbol, not a
string.

ARGUMENTS: Expected number of arguments, name of function being
executed, position in the argument where the name should
occur, and a string describing the name type being sought
(i.e., "defrule name", "deffacts name").

RETURNS: Returns the symbolic value (a string) found in the position. If
an error occurs, returns NULL.

CLIPSSystemError

PURPOSE: Standard error message used to indicate that a CLIPS
internal error has been detected.

ARGUMENTS: A string indicating the module in which the error was
detected and an ID number associated with error.

ExpandStringWithChar

PURPOSE: Adds a character to a string, expanding the string if
necessary.

ARGUMENTS: Character to be added, destination string, a pointer to the
integer representing the insertion point in the string, a
pointer to the integer representing the maximum size of the
string, and new size for the string if it must be expanded.

RETURNS: A string with the character added to it. The string that is
returned may have been dynamically reallocated to create a
larger string. The current length and maximum length values
are updated by this routine.

CLIPS Architecture Manual 79

ExpectedTypeError

PURPOSE: Standard error message used when wrong type of argument
has been used in an expression.

ARGUMENTS: Name of function, position of argument, and string containing
a description of the expected type.

ExpectedCountError

PURPOSE: Standard error message used when the wrong number of
arguments has been used in the argument list of a function
call.

ARGUMENTS: Name of function, relation value for arguments being
checked (EXACTLY, AT LEAST, NO MORE THAN), and
comparison value for arguments being checked.

FloatToString

PURPOSE: Converts a float to a string using the CLIPS numeric format.
CLIPS uses the %g format option from the C library routine
sprintf to print floating point numbers. This format selects
either scientific notation or prints all the digits of the number
(whichever ends up taking less space). In addition, CLIPS
makes sure that all floats are printed with at least one digit
following the decimal point.

ARGUMENTS: A floating-point number.

RETURNS: A string.

OTHER NOTES: Return value is stored in a static data area. Subsequent calls
to this function will write over this data area. If the return
value must be stored, it should be duplicated.

GetFileName

PURPOSE: Checks for an appropriate file name as the argument of a
function call during run-time. A file name must be a string or
a symbol.

ARGUMENTS: Name of function being executed and the position of the
argument in the argument list that contains the file name.

RETURNS: File name.

80 Utility Module

GetLogicalName

PURPOSE: Checks for an appropriate logical name in an expression
during run-time.

ARGUMENTS: The position of the argument in the argument list that
contains the logical name and the logical name to be used if
the default logical name, t, is found.

RETURNS: A string representing the logical name. If found, the value
designated as the default logical name is returned. Returns
NULL if the argument is unacceptable as a logical name.

GetNthWatchName

PURPOSE: Given an index, returns the name of the nth item in the
ListOfWatchItems (which is useful for constructing a
menu).

ARGUMENTS: An integer index.

RETURNS: The name of the nth watch item (a character string).

GetNthWatchValue

PURPOSE: Given an index, returns the value of the nth item in the
ListOfWatchItems.

ARGUMENTS: An integer index.

RETURNS: The boolean value of the nth watch item.

GetWatchItem

PURPOSE: Returns the value of a watch item.

ARGUMENTS: The name of the watch item.

LongIntegerToString

PURPOSE: Converts a long integer to a string.

ARGUMENTS: A long integer.

RETURNS: A string.

OTHER NOTES: Return value is stored in a static data area. Subsequent calls
to this function will write over this data area. If return value
must be stored, it should be duplicated.

CLIPS Architecture Manual 81

OpenErrorMessage

PURPOSE: Standard error message used when a function cannot open
a file.

ARGUMENTS: The name of the function and the file name that could not be
opened.

PeriodicCleanup

PURPOSE: Returns ephemeral garbage to the pool of free memory.
When this function is called and it is determined that there is
sufficient garbage to warrant a cleanup, then each of the
functions in the ListOfCleanupFunctions will be called to
perform garbage collection.

ARGUMENTS: Two boolean values. The first value indicates whether all
evaluation depths should cleaned up. Normally, garbage
collection only occurs for items that have an evaluation
depth greater than the current evaluation depth. If this
boolean argument is TRUE, however, the current evaluation
depth will be temporarily set to a value which forces garbage
collection for all depths. The second boolean value is used
to determine whether heuristics are used in performing the
garbage collection.

PrintAtom

PURPOSE: Prints a CLIPS primitive data type (which does not include
multifield values).

ARGUMENTS: Logical name to which output is sent, the type of the primitive
data type, and the value of the primitive data type.

PrintFloat

PURPOSE: Prints a number to a logical name using the CLIPS print
format for numbers.

ARGUMENTS: A floating-point number and a logical name.

PrintInChunks

PURPOSE: Prints a string in chunks to accommodate systems which
have a limit on the maximum size of a string which can be
printed.

ARGUMENTS: String to be printed and logical name to which the string is to
be printed.

82 Utility Module

PrintLongInteger

PURPOSE: Prints a long integer to a logical name using CLIPS print
format for numbers.

ARGUMENTS: A long integer and a logical name.

PrintTally

PURPOSE: Standard message for functions which print a message
indicating the number of items displayed (e.g. the facts
command).

ARGUMENTS: The logical name to which output is to be sent, the number of
items tallied, and singular and plural strings for the items
tallied (e.g. "fact" and "facts").

OTHER NOTES: No message is printed if the number of items tallied is zero.

RemoveCleanupFunction

PURPOSE: Removes a function from the ListOfCleanupFunctions.

ARGUMENTS: Name associated with the cleanup item.

RemovePeriodicFunction

PURPOSE: Removes a function from the ListOfPeriodicFunctions.

ARGUMENTS: Name associated with the periodic item.

RestoreAllWatchItems

PURPOSE: Restores the old value of each watch items that was saved
when the SaveAllWatchItems function was called.

SetAllWatchItems

PURPOSE: Sets all of the watch items to a particular value and
remembers the old value of each watch item.

ARGUMENTS: The new boolean value to which all watch items are set.

SetWatchItem

PURPOSE: Sets the value of a watch item.

CLIPS Architecture Manual 83

ARGUMENTS: The name of the watch item and the new boolean value. The
string “all” may be used to set all watch items to a particular
value.

SyntaxErrorMessage

PURPOSE: Standard error message used for syntax errors.

ARGUMENTS: The type of syntax error that occurred (e.g. “defrule”,
“conditional elements”, etc.).

INTERNAL FUNCTIONS

AddCPFunction

PURPOSE: Driver routine for implementing the functions
AddCleanupFunction and AddPeriodicFunction.

ARGUMENTS: A name to be associated with the function, a pointer to the
function, the priority of the item, and a pointer to a pointer to
the list to which the function is to be added.

RemoveCPFunction

PURPOSE: Driver routine for implementing the functions
RemoveCleanupFunction and
RemovePeriodicFunction.

ARGUMENTS: Name associated with the periodic item and a pointer to a
pointer to the list from which the function is to be removed.

84 Utility Module

Fact Manager Module

The Fact Manager Module (factmngr.c) provides the necessary functionality to
maintain, update, and browse facts. It also provides top-level implementation of the
assert and retract commands. Functions for displaying and browsing facts are likewise
provided. The other major functionality provided by this module is a hash table con-
taining facts. Unlike OPS5, the CLIPS inferencing paradigm does not allow two
occurrences of the same fact to be in the fact-list. A fact hash table provides a
convenient method for determining if a fact is already in the fact-list.

GLOBAL VARIABLES

ChangeToFactList

PURPOSE: Boolean flag. If TRUE, indicates that the FactList has been
altered. Updates to TRUE whenever a fact is asserted or
retracted.

INTERNAL VARIABLES

AssertRetractInProgress

PURPOSE: Boolean flag. If TRUE, an assertion or retraction of a fact is
currently occurring.

FactDuplication

PURPOSE: Boolean flag. If TRUE, duplications of facts are allowed in the
FactList.

FactHashTable

PURPOSE: Stores all facts used by CLIPS.

C IMPLEMENTATION: Implemented as an array. Each entry corresponds to a list of
fact table entries. Collisions are resolved by adding the fact
entry to the list of entries.

OTHER NOTES: Information about facts is also stored in the FactList. Used
primarily to quickly determine if a fact is already in the
FactList.

FactList

PURPOSE: Stores all facts used by CLIPS.

C IMPLEMENTATION: Implemented as a list.

CLIPS Architecture Manual 85

GarbageFacts

PURPOSE: Points to the list of facts that can be returned to free memory.
These facts have typically been retracted but need to remain
in memory because there are outstanding references to
them (e.g. they are needed for the duration of a rule firing in
case a variable access within the fact is made or other facts
might refer to them).

LastFact

PURPOSE: Points to the last fact in the FactList.

ListOfSegments

PURPOSE: Contains the list of multifield values that have been
dynamically created.

NextFactIndex

PURPOSE: Long Integer value to be used as the fact-index for the next
asserted fact.

NumberOfFacts

PURPOSE: Contains an integer count of the number of facts in the
FactList.

WatchFacts

PURPOSE: Boolean flag. If TRUE, indicates that fact assertions and
retractions should be displayed.

GLOBAL FUNCTIONS

AddFact

PURPOSE: Coordinates assertion of a fact into the FactList.

ARGUMENTS: A fact.

AddHashedFact

PURPOSE: Adds a fact to the FactHashTable.

ARGUMENTS: A fact and the hash value of that fact.

86 Fact Manager Module

OTHER NOTES: Does not check to determine if the fact is already in the
FactHashTable.

AddToSegmentList

PURPOSE: Adds a fact to the ListOfSegments. Can be used in
conjunction with the CreateFact function to perform the
same functionality as CreateMultifield.

ARGUMENTS: A pointer to a fact.

AssertString

PURPOSE: Converts a string to a fact and then asserts it. Uses the
functions StringToFact and AddFact.

ARGUMENTS: A string.

RETURNS: A pointer to the the newly asserted fact.

CreateFact

PURPOSE: Allocates the data structures necessary for a fact containing
a specified number of fields.

ARGUMENTS: Number of fields in the fact.

RETURNS: A fact of the appropriate size.

CreateMultifield

PURPOSE: Allocates the data structures necessary for a multifield
containing the specified number of fields and adds the newly
created multifield to the ListOfSegments.

ARGUMENTS: Number of fields in the multifield.

RETURNS: A multifield of the appropriate size. Note that the structures
used for the multifields are identical to the fact structures.

DecrementFactCount

PURPOSE: Decrements the count value for a fact.

ARGUMENTS: A pointer to a fact.

CLIPS Architecture Manual 87

DuplicateSegment

PURPOSE: Copies the contents of a multifield value to another multifield
value.

ARGUMENTS: A pointer to the source multifield and a pointer to the
destination multifield.

FactCompare

PURPOSE: Determines if two facts are identical.

ARGUMENTS: Two facts.

RETURNS: Boolean value. True if facts are identical; otherwise false.

FactDeinstall

PURPOSE: Called when a fact is garbage collected (not when it is
retracted). Decrements the NumberOfFacts and calls
SegmentDeinstall.

ARGUMENTS: A fact.

FactExists

PURPOSE: Determines if a fact exists in the FactHashTable.

ARGUMENTS: A fact and the hash value of that fact.

RETURNS: A pointer to the fact in the FactHashTable if it already
exists, otherwise NULL.

FactInstall

PURPOSE: Called when a fact is newly created. Increments the
NumberOfFacts and calls SegmentInstall.

ARGUMENTS: A fact.

FindIndexedFact

PURPOSE: Finds a fact by fact-index.

ARGUMENTS: The fact-index of the fact being sought.

RETURNS: A pointer to the fact with the specified fact-index or NULL if a
fact with the specified fact-index does not exist.

88 Fact Manager Module

FlushSegments

PURPOSE: Removes any multifield values from the ListOfSegments
that have a zero count and an evaluation depth greater than
the current evaluation depth.

ARGUMENTS: A fact.

GetFactDuplication

PURPOSE: Returns the current value of the FactDuplication flag.

RETURNS: A boolean value.

GetFactIndex

PURPOSE: Returns fact-index associated with a fact.

ARGUMENTS: A pointer to a fact.

RETURNS: The fact-index of the fact (an integer value).

GetFactListChanged

PURPOSE: Returns the value of ChangeToFactList.

GetFactPPForm

PURPOSE: Returns the pretty print representation of a fact.

ARGUMENTS: A pointer to a fact, a pointer to a buffer in which to store the
pretty print representation, and the size of the buffer.

RETURNS: No return value. The buffer passed as an argument is used
to store the pretty print representation.

GetNextFact

PURPOSE: Returns a pointer to the “next” fact in the FactList.

ARGUMENTS: A pointer to a fact in the FactList.

RETURNS: Next fact after the fact passed as an argument. If a NULL
pointer is used, the first fact in the FactList is returned.

GetNumberOfFacts

PURPOSE: Returns the value of the NumberOfFacts.

CLIPS Architecture Manual 89

RETURNS: An integer value.

HashFact

PURPOSE: Computes a hash value for a fact.

ARGUMENTS: A fact .

RETURNS: An integer hash value less than the array size of the
FactHashTable.

IncrementFactCount

PURPOSE: Increments the count value for a fact.

ARGUMENTS: A pointer to a fact.

InitializeFacts

PURPOSE: Performs all necessary initialization for facts (initializing the
FactHashTable, adding reset and clear functions, adding
the facts watch item, and calling DefineFunction to add
fact related commands).

ListFacts

PURPOSE: Displays all of the fact in the FactList to the logical name
wdisplay.

PrintFact

PURPOSE: Displays the fields of a fact enclosed within parentheses.

ARGUMENTS: A fact and logical name to which output is to be sent.

PrintFactWithIdentifier

PURPOSE: Displays the fact-index of a fact followed by the fact. Uses the
function PrintFact.

ARGUMENTS: A fact and logical name to which output is to be sent.

RemoveAllFacts

PURPOSE: Removes all facts from the FactList.

RemoveHashedFact

PURPOSE: Removes a fact from the FactHashTable.

90 Fact Manager Module

ARGUMENTS: A fact.

RemoveOldFacts

PURPOSE: Returns facts in the list of GarbageFacts to the memory
manager. Facts are only returned if there are no outstanding
references to them (e.g. they are not being used by the
currently executing rule or other facts do not refer to them)
and the evaluation depth at which they were created is
greater than the current evaluation depth.

RetractFact

PURPOSE: Coordinates retraction of a fact from the FactList.

ARGUMENTS: A fact.

ReturnElements

PURPOSE: Returns the data structures associated either with a fact or a
multifield to the memory manager.

ARGUMENTS: A fact or a multifield (both use the same structures).

OTHER NOTES: Fact or multifield should be deinstalled using FactDeinstall
or SegmentDeinstall respectively before removal.

SegmentDeinstall

PURPOSE: Decrements count values for the constant values (symbols,
strings, integers, floats, etc.) found in a multifield value.
Decrements the number of references to the multifield by
one.

ARGUMENTS: A multifield (which is stored using fact data structures).

SegmentInstall

PURPOSE: Increments count values for the constant values (symbols,
strings, integers, floats, etc.) found in a multifield value.
Increments the number of references to the multifield by one.

ARGUMENTS: A multifield (which is stored using fact data structures).

SetFactDuplication

PURPOSE: Sets the current value of the FactDuplication flag.

ARGUMENTS: A boolean value (the new value of the flag).

CLIPS Architecture Manual 91

RETURNS: A boolean value (the old value of the flag).

SetFactID

PURPOSE: Sets the value of NextFactID.

ARGUMENTS: An integer.

SetFactListChanged

PURPOSE: Sets value of ChangeToFactList.

ARGUMENTS: Boolean value.

StringToFact

PURPOSE: Parses a string and converts it to a fact. The string should be
a series of constants and should not contain enclosing
parentheses.

ARGUMENTS: A string.

RETURNS: A pointer to the newly created fact.

StringToMultifield

PURPOSE: Parses a string and converts it to a multifield value. The
string should be a series of constants and should not contain
enclosing parentheses.

ARGUMENTS: A string.

RETURNS: A pointer to the newly created multifield value.

INTERNAL FUNCTIONS

InitializeFactHashTable

PURPOSE: Initializes the FactHashTable.

ResetFacts

PURPOSE: Resets the facts whenever a reset command is performed.
This functions is also used for the clear command.

92 Fact Manager Module

Fact Commands Module

The Fact Commands Module (factcom.c) provides a number of commands for
manipulating and examining facts. The commands provided are assert, retract,
save-facts, load-facts, facts, fact-index, dependencies, dependents, set-
fact-duplication, and get-fact-duplication.

GLOBAL VARIABLES

None.

INTERNAL VARIABLES

None.

GLOBAL FUNCTIONS

InitFactCommands

PURPOSE: Makes appropriate DefineFunction calls to notify CLIPS of
functions defined in this module.

INTERNAL FUNCTIONS

Fact Commands

PURPOSE: A series of commands which define the fact commands listed
above. See the Basic Programming Guide for more detail
on individual functions.

OTHER NOTES: Some functionality for these commands is provided in other
modules.

CLIPS Architecture Manual 93

Deffacts Manager Module

The Deffacts Manager Module (deffacts.c) manages all aspects of deffacts construct in-
cluding parsing, execution, and removal. For a description of the deffacts construct,
see the Basic Programming Guide. The deffacts construct capability can be removed
by using the appropriate compile flag in the setup header file.

GLOBAL VARIABLES

None.

INTERNAL VARIABLES

DeffactsArray

PURPOSE: A pointer to an array of deffacts loaded using the bload
command.

DeletionsLegal

PURPOSE: A boolean flag indicating whether deffacts can be deleted
(deffacts cannot be deleted while they are being reset).

LastDeffacts

PURPOSE: A pointer to the last deffacts in the ListOfDeffacts.

ListOfDeffacts

PURPOSE: A linked list of all the currently defined deffacts.

NumberOfDeffacts

PURPOSE: An integer count of the number of facts in the
ListOfDeffacts.

GLOBAL FUNCTIONS

CreateInitialFactDeffacts

PURPOSE: Creates the initial-fact deffacts.

DeleteDeffacts

PURPOSE: Deletes a deffacts from the ListOfDeffacts.

ARGUMENTS: A pointer to the deffacts to be deleted.

CLIPS Architecture Manual 95

RETURNS: Boolean value. TRUE if the deffacts was found and deleted,
otherwise FALSE.

DeleteNamedDeffacts

PURPOSE: Deletes a named deffacts from the ListOfDeffacts.

ARGUMENTS: The name of the deffacts to be deleted.

RETURNS: Boolean value. TRUE if the deffacts was found and deleted,
otherwise FALSE.

FindDeffacts

PURPOSE: Finds a named deffacts in the ListOfDeffacts.

ARGUMENTS: The name of the deffacts to be found.

RETURNS: A pointer to the deffacts if found, otherwise NULL.

GetDeffactsName

PURPOSE: Returns the name of a deffacts.

ARGUMENTS: A pointer to a deffacts.

RETURNS: String name of the deffacts.

GetDeffactsPPForm

PURPOSE: Returns the pretty print representation of a deffacts.

ARGUMENTS: A pointer to a deffacts.

RETURNS: The string pretty print representation of the deffacts.

GetNextDeffacts

PURPOSE: Allows access to the ListOfDeffacts.

ARGUMENTS: A pointer to a deffacts in the ListOfDeffacts.

RETURNS: If passed a NULL pointer, returns the first deffacts in the
ListOfDeffacts. Otherwise, returns the next deffacts
following the deffacts passed as an argument.

96 Deffacts Manager Module

InitializeDeffacts

PURPOSE: Initializes the deffacts construct. Creates the initial-fact
deffacts, adds reset, clear, save, bload, bsave, and
constructs-to-c functions for deffacts, and defines the
functions undeffacts, list-deffacts, and ppdeffacts.

IsDeffactsDeletable

PURPOSE: Indicates whether a deffacts can be deleted.

ARGUMENTS: A pointer to a deffacts.

RETURNS: Boolean value. TRUE if the deffacts can be deleted,
otherwise FALSE.

ListDeffacts

PURPOSE: Displays the ListOfDeffacts.

ListDeffactsCommand

PURPOSE: Implements the list-deffacts command. Uses the driver
function ListDeffacts.

PPDeffacts

PURPOSE: Pretty prints a deffacts.

ARGUMENTS: Name of deffacts to be pretty printed and logical name of the
output source.

PpdeffactsCommand

PURPOSE: Implements the ppdeffacts command. Uses the driver
function PPDeffacts.

RemoveAllDeffacts

PURPOSE: Removes all deffacts from the ListOfDeffacts.

SetListOfDeffacts

PURPOSE: Sets the ListOfDeffacts to the specified value. Normally
used when initializing a run-time module or when bloading a
binary file to install the ListOfDeffacts.

ARGUMENTS: A pointer to a linked list of deffacts.

CLIPS Architecture Manual 97

UndeffactsCommand

PURPOSE: Implements the undeffacts command.

INTERNAL FUNCTIONS

ClearDeffacts

PURPOSE: Deffacts construct clear function. Removes all deffacts and
creates the initial-fact deffacts.

Deffacts Bload/Bsave Functions

PURPOSE: A set of functions used by the bload and bsave commands
to process the deffacts construct. These functions are made
available to the bload and bsave commands by calling the
function AddBinaryItem.

Deffacts Constructs-To-C Functions

PURPOSE: A set of functions used by the constructs-to-c command to
process the deffacts construct. These functions are made
available to the constructs-to-c command by calling the
function AddCodeGeneratorItem.

ParseDeffacts

PURPOSE: Coordinates all actions necessary for the construction of a
deffacts into the current environment. Called to parse a
deffacts construct.

ARGUMENTS: Logical name from which deffacts input is read.

OTHER NOTES: Makes use of parsing functions from other modules such as
the GetConstructNameAndComment function and the
BuildRHSAssert function.

ResetDeffacts

PURPOSE: Deffacts construct reset function. Asserts all facts associated
with deffacts into the FactList.

SaveDeffacts

PURPOSE: Deffacts construct save function. Pretty prints all deffacts to
the given logical name.

ARGUMENTS: A logical name to which output is sent.

98 Deffacts Manager Module

CLIPS Architecture Manual 99

Defglobal Manager Module

The Defglobal Manager Module (defglobl.c) manages all aspects of defglobal
construct including parsing, execution, and removal. For a description of the defglobal
construct, see the Basic Programming Guide. The defglobal construct capability can
be removed by using the appropriate compile flag in the setup header file.

GLOBAL VARIABLES

ChangeToGlobals

PURPOSE: Boolean flag. If TRUE, indicates that a new global variable
has been added or an existing global variable has been
altered.

INTERNAL VARIABLES

BDefglobalArray

PURPOSE: A pointer to an array of defglobal data structures loaded
using the bload command. This variable is the bload
equivalent of the DefglobalArray variable.

BDefglobalPointersArray

PURPOSE: A pointer to an array containing pointers to the defglobal
data structures loaded using the bload command. This
variable is the bload equivalent of the
DefglobalPointersArray variable.

DefglobalArray

PURPOSE: A pointer to an array containing the defglobal data
structures. Global variables in stored in the array so that they
can be referred to by integer indexes for quick reference.

ListOfDefglobals

PURPOSE: A linked list of structures containing pointers to all the
currently defined defglobals.

NumberOfDefglobals

PURPOSE: An integer count of the number of global variables in the
ListOfDefglobals and the DefglobalArray.

CLIPS Architecture Manual 101

ResetGlobals

PURPOSE: Boolean flag. If TRUE, indicates that globals will be reset to
their original values when a reset command is performed.
By being reset, the original expression associated with the
global variable is reevaluated and then assigned to the
global variable. If this flag is FALSE, then global variable
values are not changed during a reset.

SizeOfDefglobalArray

PURPOSE: An integer count of the maximum number of global variables
which can be stored in the DefglobalArray.

WatchGlobals

PURPOSE: Boolean flag. If TRUE, indicates that changes to globals
should be displayed.

GLOBAL FUNCTIONS

ClearDefglobals

PURPOSE: Defglobals construct clear function. Removes all defglobals.

FindDefglobal

PURPOSE: Finds a named defglobal in the DefglobalArray.

ARGUMENTS: The name of defglobal to be found.

RETURNS: A pointer to the defglobal if found, otherwise NULL.

GetActualDefglobal

PURPOSE: Given a pointer returned by FindDefglobal or
GetNextDefglobal, returns a pointer to the data structure
where the global variable information is actually stored.

ARGUMENTS: A pointer to a ListOfDefglobals data structure which
contains a pointer to a defglobal data structure.

RETURNS: A pointer to a defglobal data structure.

GetDefglobalValue

PURPOSE: Gets the value of a global variable.

102 Defglobal Manager Module

ARGUMENTS: The name of the global variable and a pointer to a data
structure in which the value of the global variable is to be
stored.

RETURNS: Boolean value. TRUE if the global variable was found,
otherwise FALSE.

GetDefglobalName

PURPOSE: Returns the name of a defglobal.

ARGUMENTS: A pointer to a defglobal.

RETURNS: String name of the defglobal.

GetDefglobalPPForm

PURPOSE: Returns the pretty print representation of a defglobal and its
original expression value when it was defined.

ARGUMENTS: A pointer to a buffer in which to store the pretty print
representation, the size of the buffer, and a pointer to a
defglobal.

RETURNS: No return value. The buffer passed as an argument is used
to store the pretty print representation.

GetDefglobalValueForm

PURPOSE: Returns the pretty print representation of a defglobal and its
current value.

ARGUMENTS: A pointer to a buffer in which to store the pretty print
representation, the size of the buffer, and a pointer to a
defglobal.

RETURNS: No return value. The buffer passed as an argument is used
to store the pretty print representation.

GetGlobalsChanged

PURPOSE: Returns the value of ChangeToGlobals.

GetIndexedDefglobal

PURPOSE: Given an integer index n, returns a pointer to the nth
defglobal data structure in the DefglobalsArray.

ARGUMENTS: An integer index.

CLIPS Architecture Manual 103

RETURNS: A pointer to a defglobal data structure.

GetNextDefglobal

PURPOSE: Allows access to the ListOfDefglobals.

ARGUMENTS: A pointer to a defglobal in the ListOfDefglobals.

RETURNS: If passed a NULL pointer, returns the first defglobal in the
ListOfDefglobals. Otherwise, returns the next defglobal
following the defglobal passed as an argument.

GetNumberOfDefglobals

PURPOSE: Returns the value of the NumberOfDefglobals.

RETURNS: An integer value.

GetResetGlobals

PURPOSE: Returns the current value of the ResetGlobals flag.

RETURNS: A boolean value.

GetResetGlobalsCommand

PURPOSE: Implements the get-reset-globals command.

GlobalRtnUnknown

PURPOSE: Access function placed within CLIPS expressions to retrieve
the values of global variables.

ARGUMENTS: A pointer to a data structure in which to return a value. The
integer index which indicates which global value to retrieve
is stored in the argument list of this function's expression.

RETURNS: No value. The value of the defglobal is stored in the data
structure passed as an argument.

InitializeDefglobal

PURPOSE: Initializes the defglobal construct. Creates the globals watch
item, adds reset, clear, save, bload, bsave, and
constructs-to-c functions for defglobals, and defines the
functions set-reset-globals and get-reset-globals.

104 Defglobal Manager Module

ListDefglobals

PURPOSE: Displays the ListOfDefglobals allow with their current
values.

ListDefglobalsCommand

PURPOSE: Implements the list-defglobals command.

PpdefglobalCommand

PURPOSE: Implements the ppdefglobal command.

QFindDefglobal

PURPOSE: Finds a named defglobal in the DefglobalArray.

ARGUMENTS: The name of defglobal to be found. This argument is
specified as a pointer to a SymbolTable entry rather than a
character string.

RETURNS: A pointer to the defglobal if found, otherwise NULL.

QGetDefglobalValue

PURPOSE: Gets the value of a global variable.

ARGUMENTS: The integer index of the global variable and a pointer to a
data structure in which the value of the global variable is to
be stored.

OTHER NOTES: This function is quicker than GetDefglobalValue since the
position of the global variable in the DefglobalArray does
not have to be determined.

QSetDefglobalValue

PURPOSE: Sets the value of a global variable.

ARGUMENTS: The integer index of the global variable and a pointer to a
data structure in which the new value of the global variable
is stored.

RETURNS: Boolean value. TRUE if the global variable was found and its
value changed, otherwise FALSE.

OTHER NOTES: This function is quicker than SetDefglobalValue since the
position of the global variable in the DefglobalArray does
not have to be determined.

CLIPS Architecture Manual 105

ReplaceGlobalVariable

PURPOSE: Replaces a reference to a global variable within an
expression with a function call to GlobalRtnUnknown that
refers to the variable by an index for quick reference.

ARGUMENTS: A pointer to an expression.

RETURNS: Boolean value. TRUE if the global variable reference was
replace, otherwise FALSE (the global could not be found).

ResetDefglobals

PURPOSE: Defglobals construct reset function. If the ResetGlobals
flag is TRUE, then all global variables are reset to their
original values.

SetDefglobalValue

PURPOSE: Sets the value of a global variable.

ARGUMENTS: The name of the global variable and a pointer to a data
structure in which the new value of the global variable is
stored.

RETURNS: Boolean value. TRUE if the global variable was found and its
value changed, otherwise FALSE.

SetGlobalsChanged

PURPOSE: Sets value of ChangeToGlobals.

ARGUMENTS: Boolean value.

SetListOfDefglobals

PURPOSE: Sets the ListOfDefglobals, DefglobalArray, and
NumberOfDefglobals, and SizeOfDefglobalArray to
the specified values. Normally used when initializing a
run-time module or when bloading a binary file.

ARGUMENTS: A pointer to a linked list of defglobals, an array in which the
defglobal values are stored, and the number of defglobals
contained in the array (which is also the size of the array).

SetResetGlobals

PURPOSE: Sets the current value of the ResetGlobals flag.

106 Defglobal Manager Module

ARGUMENTS: A boolean value (the new value of the flag).

RETURNS: A boolean value (the old value of the flag).

SetResetGlobalsCommand

PURPOSE: Implements the set-reset-globals command.

INTERNAL FUNCTIONS

AddDefglobal

PURPOSE: Adds a global variable to the ListOfDefglobals and the
DefglobalArray. If the global variable already exists, then it
is replaced.

ARGUMENTS: The name of the global variable, a pointer to a data structure
in which the global's initial value is stored, and a pointer to
the expression to be evaluated to determine the global's
value whenever it is reset.

OTHER NOTES: The DefglobalArray is dynamically expanded if the
SizeOfglobalArray is not large enough to contain the new
global variable.

Defglobal Bload/Bsave Functions

PURPOSE: A set of functions used by the bload and bsave commands
to process the defglobal construct. These functions are made
available to the bload and bsave commands by calling the
function AddBinaryItem.

Defglobal Constructs-To-C Functions

PURPOSE: A set of functions used by the constructs-to-c command to
process the defglobal construct. These functions are made
available to the constructs-to-c command by calling the
function AddCodeGeneratorItem.

GetVariableDefinition

PURPOSE: Parses a single variable definition within a defglobal
construct. If no errors occur while defining the variable, the
function AddDefglobal is called to add the new global
variable to the ListOfDefglobals.

ARGUMENTS: Logical name from which defglobal input is read and a
pointer to an integer error flag.

CLIPS Architecture Manual 107

RETURNS: Boolean value. FALSE if an error occurred while parsing,
otherwise TRUE. The value of the error flag passed as an
argument is also set by this function.

OTHER NOTES: Uses the function ParseAtomOrExpression to parse the
expression assigned to the global variable. The function
EvaluationExpression is then called to determine the
initial value of the variable.

ParseDefglobal

PURPOSE: Coordinates all actions necessary for the construction of a
defglobal into the current environment. Called to parse a
defglobal construct.

ARGUMENTS: Logical name from which defglobal input is read.

RETURNS: Boolean value. TRUE if an error occurred while parsing,
otherwise FALSE.

OTHER NOTES: Uses the function GetVariableDefinition to perform the
majority of parsing.

SaveDefglobals

PURPOSE: Defglobal construct save function. Pretty prints all defglobals
to the given logical name.

ARGUMENTS: A logical name to send output.

108 Defglobal Manager Module

Defrule Parser Module

The Defrule Parser Module (ruleprsr.c) coordinates the parsing of the LHS of the rule
(as well as providing functions for parsing the RHS of a rule). LHS conditional
elements are represented internally using the following format:

 1st Conditional Element --> CE information
 |
 |
 2nd Conditional Element --> CE information
 |
 |
 3rd Conditional Element --> CE information

 •
 •
 •

 nth Conditional Element --> CE information

If the conditional element is a test CE, the CE information will be an expression
stored using the standard format for an expression. The CE information for a
connected conditional element (an and CE, or CE, or logical CE) follows the format
shown above. The information for a pattern CE or a not CE is used to represent the
fields of the pattern.

As an examples, the conditional elements for the following rule

(defrule example
 (pattern 1)
 (or (pattern 2a)
 (pattern 2b))
 (not (pattern 3))
 (pattern 4)
 =>)

would be stored as

CLIPS Architecture Manual 109

 pattern CE --> pattern 1 information
 |
 |
 or CE --> pattern CE --> pattern 2a information
 | |
 | |
 | pattern CE --> pattern 2b information
 |
 |
 not CE --> pattern 3 information
 |
 |
 pattern CE --> pattern 4 information

 The CE information for pattern CEs and not CEs is stored using the following
format:

 1st field --> 2nd field --> 3rd field ... nth field
 | | | |
 | | | |
 field info field info field info field info

Information for each field is stored in the following format:

 first variable (if any)
 |
 |
 1st | connective constraint --> & connective constraints
 |
 |
 2nd | connective constraint --> & connective constraints

 •
 •
 •

 nth | connective constraint --> & connective constraints

The first-binding occurrence of a variable is stored first in the structure (if it exists). A
first-binding occurrence of a variable for a field in a pattern is a variable by itself or a
variable followed by an & connective constraint. The variable cannot be negated. First
occurrences of the variable ?x in a field of a pattern would include

?x
?x&blue|green

110 Defrule Parser Module

but not

~?x
?x|?y
red&?x

The structure to contain the first binding variable is also used to indicate whether
the field should match a single field value or a multifield value. Fields without a binding
variable are considered to match against a single field value.

The subsequent bottom links connected to the binding variable structure contain
information about the list of | connective constraints found within the field. Each |
connective constraint of a field can be accessed through the bottom link of the
structure. The first structure to the immediate right of each | connective constraint
represents the first constraint associated with the | connective constraint. Structures to
the right of this first constraint represent other constraints associated with the |
connective constraint through the use of the & connective constraint. Individual
constraints can be literal constraints, predicate constraints, return value constraints,
and/or variable constraints. Any of these constraints may be negated using the ~
connective constraint. When grouping constraints, the | connective constraint in a field
constraint is given a lower precedence than the & connective constraint.

For example, the following field found in a pattern

?x&:numberp(?x)&=(+ ?y 3)|:wordp(?x)&~red&~green

would be represented as

 single field variable x
 |
 |
 numberp(?x) --> =(+ ?y 3)
 |
 |
 wordp(?x) --> ~red --> ~green

GLOBAL VARIABLES

GlobalSalience

PURPOSE: An integer used to store the evaluated value of the salience
when the rule is defined (i.e. the evaluated value of the
variable SalienceExpression when the rule is defined).

SalienceExpression

PURPOSE: A pointer to the expression used in the salience declaration
of a rule (which may either be a constant integer, global
variable, or a function call).

CLIPS Architecture Manual 111

INTERNAL VARIABLES

LHSError

PURPOSE: A global boolean value used to indicate whether an error
has occurred in one of the rule parsing routines.

GLOBAL FUNCTIONS

ParseRuleLHS

PURPOSE: Coordinates all the actions necessary for parsing the LHS of
a rule including the reordering of pattern conditional
elements to conform with the CLIPS Rete topology.

ARGUMENTS: Logical name from which rule input is read and a pointer to a
token structure in which scanned tokens are placed.

RETURNS: A pointer to a linked structure containing the intermediate
LHS representation of a rule. If an error has occurred during
parsing, a null pointer is returned.

ParseRuleRHS

PURPOSE: Coordinates all the actions necessary for parsing the RHS of
a rule.

ARGUMENTS: Logical name from which rule input is read.

RETURNS: An expression structure representing the RHS of a rule.

RestrictionParse

PURPOSE: Parses a single field within a pattern. This field may either
be a single field wildcard, a multifield wildcard, a single field
variable, a multifield variable, or a series of connected
constraints.

ARGUMENTS: Logical name from which input is read and a pointer to a
token structure.

RETURNS: Intermediate LHS representation of the field.

112 Defrule Parser Module

INTERNAL FUNCTIONS

AssignmentParse

PURPOSE: Finishes the parsing of pattern conditional elements that
have been bound to a variable.

ARGUMENTS: Logical name from which input is read, and name of the
variable (or the fact address) to which the pattern CE is
bound.

RETURNS: Intermediate LHS representation of the assigned pattern
conditional element.

ConjunctiveRestrictionParse

PURPOSE: Parses a single constraint field in a pattern that is not a
single field wildcard, multifield wildcard, or multifield
variable. The field may consist of a number of subfields tied
together using the & connective constraint and/or the |
connective constraint.

ARGUMENTS: Logical name from which input is read, and a pointer to a
token structure.

RETURNS: Intermediate LHS representation of the field.

ConnectedPatternParse

PURPOSE: Handles parsing of the connected conditional elements (i.e.
those conditional elements that may contain one or more
other conditional elements). The connected conditional
elements include the and CE, the or CE, and the logical
CE.

ARGUMENTS: Logical name from which input is read, and a pointer to a
token structure.

RETURNS: Intermediate LHS representation of the connected
conditional element.

CreateInitialPattern

PURPOSE: Creates an LHS representation of the pattern (initial-fact) for
rules which do not contain an LHS.

RETURNS: Intermediate LHS representation of the pattern (initial-fact).

CLIPS Architecture Manual 113

DeclarationParse

PURPOSE: Parses a defrule declaration. Only salience declarations are
currently allowed.

ARGUMENTS: Logical name from which input is read.

RETURNS: Nothing. Sets value of the variables GlobalSalience and
SalienceExpression.

GroupPatterns

PURPOSE: Groups a series of connected conditional elements together.

ARGUMENTS: Logical name from which input is read, type of token which
terminates the CE grouping, and string representation of the
terminating token.

RETURNS: Intermediate LHS representation of the grouped patterns.

LHSPattern

PURPOSE: Parses a single conditional element found on the LHS of a
rule. Conditional element types include pattern CEs (which
may be assigned to a variable), test CEs, not CEs, logical
CEs, and CEs, and or CEs.

ARGUMENTS: Logical name from which input is read, and the type of token
which terminates the conditional element grouping in which
the conditional element is found (e.g. a pattern CE parsed
within an and CE is terminated by a parenthesis while a
pattern CE not enclosed by another CE is terminated by the
=> symbol.

RETURNS: Intermediate LHS representation of the LHS conditional
element.

LiteralRestrictionParse

PURPOSE: Parses a subfield of a field. The subfield may be a literal
constraint, a predicate constraint, a return value constraint,
or a variable constraint. The constraints may also be
negated using the ~ connective constraint.

ARGUMENTS: Logical name from which input is read, and a pointer to a
token structure.

RETURNS: Intermediate LHS representation of the subfield.

114 Defrule Parser Module

NotPatternParse

PURPOSE: Handles parsing of not conditional elements.

ARGUMENTS: Logical name from which input is read.

RETURNS: Intermediate LHS representation of the not conditional
element.

RuleBodyParse

PURPOSE: Parses the LHS of a rule, but does not reorder any of the
LHS patterns to conform with the CLIPS Rete Topology.

ARGUMENTS: Logical name from which rule input is read and a pointer to a
token structure in which scanned tokens are placed.

RETURNS: A pointer to a linked structure containing the intermediate
LHS representation of a rule. If an error has occurred during
parsing, a null pointer is returned.

SequenceRestrictionParse

PURPOSE: Parses a sequence of constraint fields found within a pattern.
This function recognizes deftemplate patterns and will call
the appropriate routines to parse these types of patterns.

ARGUMENTS: Logical name from which input is read, and a pointer to a
token structure.

RETURNS: Intermediate LHS representation of the sequence of fields.

SimplePatternParse

PURPOSE: Parses a simple pattern (an opening parenthesis followed by
one or more fields followed by a closing parenthesis).

ARGUMENTS: Logical name from which input is read, and a pointer to a
token structure.

RETURNS: Intermediate LHS representation of the simple pattern
conditional element.

TagLHSLogicalNodes

PURPOSE: Marks all and and or conditional elements contained within
a logical conditional element as having the properties
associated with a logical CE.

CLIPS Architecture Manual 115

ARGUMENTS: The LHS representation of a logical conditional element.

TestPattern

PURPOSE: Handles parsing of test conditional elements.

ARGUMENTS: Logical name from which input is read.

RETURNS: Intermediate LHS representation of the test conditional
element.

116 Defrule Parser Module

Reorder Module

Basic Rete topology only allows a pattern conditional element to stand by itself or to be
modified with the not conditional element. In addition, the LHS is enclosed within an
implied and conditional element. Combinations of and conditional elements and or
conditional elements are not allowed using basic Rete topology. CLIPS allows these
conditional elements to be used in combination by generating multiple rules which
conform to basic Rete topology from single instances of rules which do not conform to
basic Rete topology. The Reorder Module (reorder.c) reorders a single LHS which
may or may not conform to basic Rete topology into one or more LHSs which do
conform to basic Rete topology. Reordered LHSs have a single top-level or pattern
conditional element (with each argument of the or conditional element representing a
separate rule which must be generated) with multiple and conditional elements
containing one or more pattern conditional elements or not conditional elements but
no other types of conditional elements. For the purposes of reordering, the logical
conditional element behaves identically to the and conditional element.

Reordering involves two major steps: transformation and reduction. Transformation
involves changing a conditional element from one form to another equivalent form.
The transformation performed when reordering patterns involves replacing and/or
conditional elements with equivalent or/and conditional elements. For example,

(and (or (a) (b))
 (or (c) (d)))

can be replaced with

(or (and (a)
 (or (c) (d)))
 (and (b)
 (or (c) (d))))

This transformation makes use of the observation that the conditional elements
contained within (or (a) (b)) can be extracted and combined individually with an and
conditional element with copies of the (or (c) (d)) conditional element. The resulting set
of conditional elements can then be placed together using an or conditional element.
This transformation stated more generally is

(and (<CE-a-1> ...
 (or <CE-o-1> ... <CE-o-n>) ...
 <CE-a-n>)

can be replaced with

(or (and <CE-a-1> ... <CE-o-1> ... (pattern an)) ...
 (and <CE-a-1> ... <CE-o-n> ... (pattern an)))

Reduction involves simplifying conditional elements. The reduction used when
reordering conditional elements involves removing redundant information. For
example, a CE such as (and (and <CE-1> <CE-2>) can be simplified to (and <CE-1>

CLIPS Architecture Manual 117

<CE-2>). This type of reduction will be referred to as adjacency reduction. As another
example,

(or (and (and (a) (b)) (and (c) (d))))

can be converted to

(or (and (a) (b)) (and (c) (d)))

Note that, for this type of simplification, the and/or conditional elements must be
adjacent. For example, the following CE would not be simplified by this type of reduc-
tion:

(or (and (or (a))))

As a point of interest, advanced Rete topology allows the and conditional element
to be incorporated directly into the Rete Join Network. This feature, called joins from
the right, is discussed in further detail in an article by IBM. Currently, joins from the
right are not implemented in CLIPS but, if added, would require changes to the man-
ner in which the reordering of conditional elements is accomplished.

GLOBAL VARIABLES

None.

INTERNAL VARIABLES

None.

GLOBAL FUNCTIONS

CopyNodes

PURPOSE: Copies a set of patterns.

ARGUMENTS: Patterns to be copied.

RETURNS: A copy of the patterns.

GetNode

PURPOSE: Creates an empty node structure used for building patterns.

RETURNS: A pointer to an empty node structure initialized with default
values.

ReorderPatterns

PURPOSE: Reorders a group of patterns to accommodate CLIPS Rete
topology.

118 Reorder Module

ARGUMENTS: A group of patterns.

RETURNS: A modified group of patterns that contains a single top-level
or conditional element followed by one or more and
conditional elements.

ReturnNodes

PURPOSE: Returns a set of patterns to the free pool of memory.

ARGUMENTS: Patterns to be returned.

INTERNAL FUNCTIONS

AdjacentReduction

PURPOSE: Performs adjacency reduction on a group of patterns.

ARGUMENTS: A group of patterns.

RETURNS: A modified group of patterns.

ReverseOR

PURPOSE: Performs a transformation on logical and/or pattern oper-
ators to change them to logical or/and pattern operators.

ARGUMENTS: A group of patterns.

RETURNS: A modified group of patterns.

CLIPS Architecture Manual 119

Variable Manager Module

The Variable Manager Module (variable.c) provides a set of access functions which
are used to retrieve the results of the analysis of the LHS of a rule. Some of the
functions provided can be used to determine the location of a variable on the LHS of a
rule and to obtain the expressions generated for the pattern and join networks. These
access functions are utilized by the Build Module when it adds a rule to the rule
network.

GLOBAL VARIABLES

None.

INTERNAL VARIABLES

AnalysisExpressions

PURPOSE: Maintains a list for each pattern of the expressions to be
evaluated in the pattern and join networks.

CurrentPatternInfo

PURPOSE: Maintains a list of information about patterns and the
variables contained within them.

GLOBAL FUNCTIONS

CountJoins

PURPOSE: Determines number of joins needed for the LHS of a rule

RETURNS: An integer representing the number of joins needed for the
LHS of a rule (in essence, the number of patterns on the
LHS of the rule).

OTHER NOTES: Accesses AnalysisExpressions to derive the information.

OTHER NOTES: Accesses AnalysisExpressions to derive the information.

CountPatternFields

PURPOSE: Determines the number of fields in a pattern.

ARGUMENTS: Pattern number.

RETURNS: An integer representing number of fields in the pattern.

CLIPS Architecture Manual 121

OTHER NOTES: Accesses the variable AnalysisExpressions to derive the
information.

ExpressionComplexity

PURPOSE: Determines the complexity of an expression for use with the
lex, mea, simplicity, and complexity conflict resolution
strategies.

ARGUMENTS: An pointer to an expression.

RETURNS: An integer value representing the complexity of the
expression. Each function call contained within an
expression adds one to the complexity of the expression
(with an initial complexity of zero). Calls to the and, or, and
not functions do not increase the complexity of an
expression, but function calls made within these functions
do.

FindVariable

PURPOSE: Searches for the location of the first binding occurrence of a
variable on the LHS of a rule available to a specific pattern
or expression. Such a variable must occur before the pattern
and field in which the reference is made (with the exception
of variables in deftemplate patterns for which forward
referencing is allowed since the position of the fields in the
pattern will be rearranged).

ARGUMENTS: Name of the variable being sought, first pattern in which to
begin looking for the variable, current pattern and field with
which the variable is associated (with a field value of -1
indicating that forward references are allowed), and a value
indicating whether the variable is “inside” or “outside” the
pattern (i.e. a variable inside a not conditional element can
refer to other variables within that CE, but variables outside
of a not CE cannot refer to variables within a not CE).

RETURNS: A pointer to a variable information structure if the variable is
found; otherwise NULL.

OTHER NOTES: Starting pattern and inside/outside values are very useful. By
setting the starting pattern to the current pattern, it can be
determined whether a variable reference within a pattern
can be compared to another variable within the same pattern
as opposed to using a variable in a previous pattern. This
information is useful when determining which expressions
can be placed in the pattern network. The inside/ outside
value allows strict scoping of variables within not CEs. For

122 Variable Manager Module

example, a test CE following a not CE is outside of the not
CE and may not reference any of the variables within the not
CE, while an expression associated with a predicate
constraint used within the not CE is inside the not CE and
may reference variables used within the not CE. If the field
index is set to -1, forward references of variables within a
pattern will be allowed. This is allowed for template patterns
since the variables may be referenced in the proper order
within the original pattern but might be rearranged in an
improper order when the actual pattern to be used is
generated.

FlushAnalysisExpressions

PURPOSE: Returns structures associated with the global variable
AnalysisExpressions and sets the variable to NULL.

FlushVariableAnalysis

PURPOSE: Purges all current information about patterns and variables.

GetFactAddressPosition

PURPOSE: Returns the pattern number (ranging from one to the number
of patterns) corresponding to a fact address variable.

ARGUMENTS: Name of the fact address variable.

RETURNS: Pattern position to which the fact address variable is bound
(or zero if not found).

GetJoinLogic

PURPOSE: Returns RHS join logic for a particular pattern.

ARGUMENTS: Pattern number.

RETURNS: A character. The character '-' is returned if the connected
pattern is within a not CE and '+' is returned if the connected
pattern is not within a not CE. A '?' is returned if the pattern
number does not correspond to an analyzed join.

GetNodeType

PURPOSE: Returns pattern network logic for a field of a given pattern.

ARGUMENTS: Pattern and field number.

CLIPS Architecture Manual 123

RETURNS: Logic type. If it can be found, it will be SINGLE, MULTIFIELD,
or STOP. If it cannot be found, it will return UNKNOWN to
signal an error.

OTHER NOTES: Accesses the variable AnalysisExpressions to derive the
information.

GetNotJoinExpression

PURPOSE: Returns secondary join network expression for a particular
pattern. The secondary expression is needed when test
expressions are used after a not conditional element.

ARGUMENTS: Pattern number.

RETURNS: Secondary join network expression.

OTHER NOTES: Returns original copy of the expression and sets pointer to
the expression to null. Hence, subsequent calls with the
same pattern number will return null. Accesses
AnalysisExpressions to derive the information.

GetPatternExpression

PURPOSE: Returns pattern network test for a particular pattern and field.

ARGUMENTS: Pattern and field number.

RETURNS: Pattern network expression.

OTHER NOTES: Returns original copy of the expression and sets pointer to
the expression to NULL. Hence, subsequent calls with the
same arguments will return NULL. Accesses
AnalysisExpressions to derive the information.

GetPrimaryJoinExpression

PURPOSE: Returns the primary join network expression for a particular
pattern.

ARGUMENTS: Pattern number.

RETURNS: Primary join network expression.

OTHER NOTES: Returns original copy of the expression and sets pointer to
the expression to NULL. Hence, subsequent calls with the
same pattern number will return NULL. Accesses
AnalysisExpressions to derive the information.

124 Variable Manager Module

GetRelationForPattern

PURPOSE: Returns the relation name (if any) associated with the first
field of an LHS pattern.

ARGUMENTS: An integer index representing the pattern to be checked.

RETURNS: A pointer to the relation name symbol if it exists; otherwise
NULL.

GetVariableInformation

PURPOSE: Returns the value of the variable CurrentPatternInfo.

RETURNS: The variable CurrentPatternInfo.

PatternHasTemplate

PURPOSE: Determines whether a pattern on the LHS of a rule has an
associated deftemplate.

ARGUMENTS: An integer index representing the pattern to be checked.

RETURNS: Boolean value. True if the first field of the LHS pattern is
associated with a deftemplate; otherwise false.

RuleComplexity

PURPOSE: Determines the complexity of a rule for use with the lex, mea,
simplicity, and complexity conflict resolution strategies.

ARGUMENTS: None. The complexity is computed for the rule being
currently analyzed. The variable AnalysisExpressions is
used to derive the complexity information.

RETURNS: An integer value representing the complexity of the rule. The
rule complexity is the sum of the complexity of each
expression associated with the join or pattern network for the
rule computed using the function ExpressionComplexity.

SetRuleInformation

PURPOSE: Sets the value of the variable AnalysisExpressions.

ARGUMENTS: The new value.

SetVariableInformation

PURPOSE: Sets the value of the variable CurrentPatternInfo.

CLIPS Architecture Manual 125

ARGUMENTS: The new value.

INTERNAL FUNCTIONS

None.

126 Variable Manager Module

Analysis Module

The Analysis Module (analysis.c) creates the appropriate function calls to be
embedded in the join and pattern network. It also uses both the Variable Module and
the Build Module to create expressions to be placed in the network. When the LHS
representation of a rule is passed to the rule analysis function, several steps in the
generation of an expression occur.
First, the Analysis Module determines the location of variables within the patterns and
if any semantic errors involving the use of variables have occurred. It analyzes the set
of LHS patterns to determine where variables are being bound. It keeps track of fact
address variables the patterns to which they are bound and detects errors in the usage
of variables.

Each pattern has the following information stored about it: Which pattern is it (first,
second, third)? Is the pattern bound to a fact address variable; and, if so, what is the
name of the variable? Is the pattern logically negated? Which variables are bound in
this pattern?

Bound variables are variables which either stand alone in a field or are the first
subfield of a field and are immediately followed by an & connective constraint. Bound
variables have the following information stored about them: the variable name, the
pattern and field numbers in which they are found, and whether the variable is a
single- or multifield variable.

The typical error detected by the Analysis Module is a reference to a variable
before it has been bound. The following rules all incorrectly reference the variable ?x.

(defrule error1
(fact ~?x)
=>)

(defrule error2
(not (fact ?x))
(data ?x)
=>)

(defrule error3
(data ?y)
(test (> ?x ?y))
=>)

(defrule error4
(not (fact ?x))
(test (> ?x 4))
=>)

(defrule error5
(data ?x | all)
=>)

Rules error1 and error3 simply make a reference to the variable x before the vari-
able has been bound. Rules error2 and error4 demonstrate that the scope of a vari-
able first bound within a not CE is limited strictly to within the not CE. Rule error4 can
be corrected by placing the test within the not CE using &:(> ?x 4). Rule error5

CLIPS Architecture Manual 127

also makes an unbound reference to ?x. Variable ?x is the first variable in the field;
however, it is connected with a | connective constraint and, therefore, is not
considered to be a binding occurrence of the variable.

Note that the deftemplate construct generates normal LHS patterns from the LHS
template patterns used in a rule. Because fields may be listed in any order in a tem-
plate pattern, it is possible for a converted template pattern to access a variable before
that variable is defined. For example, given the following deftemplate,

(deftemplate temp
 (field x)
 (field y))

the following two rules properly use the template patterns:

(defrule example-1
 (temp (x ?x) (y ?y&~?x))
 =>)

(defrule example-2
 (temp (y ?y) (x ?x&~?y))
 =>)

Notice that, in the template patterns of both rules, variables are defined before they are
used. However, when the conversion from LHS template patterns to normal LHS pat-
terns is performed, the rules appear as follows:

(defrule example-1
 (temp ?x ?y&~?x)
 =>)

(defrule example-2
 (temp ?x&~?y ?y)
 =>)

Rule example-1 has no forward references to variables; however, rule example-2 ref-
erences the variable ?y before it is defined. Because fields in a template pattern may
be specified in any order and the specified fields may be rearranged in generating the
actual LHS pattern to be used, forward references to variables in a template pattern
are allowed so long as the variable is contained somewhere within the pattern in
which it is referenced first.

Once the variables within the patterns have been identified, the Generate Module
can then be used to generate expressions for the pattern and join networks. Many
factors must be considered when generating expressions for evaluation in the
networks. Several examples bear mentioning.

(defrule example1
(foo ?x)
(not (bar ?x))
(test (> ?x 4))
=>)

128 Analysis Module

Rule example1 demonstrates that two separate expressions can be needed for
joins with a not CE. The first expression needed for the not CE is performed on the
pattern itself. This expression checks to see if the ?x in the bar fact is the same as the
?x in the foo fact. The expression (> ?x 4) references ?x in the foo fact but should not
be associated with the other expression. This is necessary for the case where no bar
facts exist. The expression comparing ?x in foo to ?x in bar does not have to be
performed in this case. If the (> ?x 4) expression was associated with the other
expression, the existence of any foo fact along with no bar facts would cause the rule
to be activated. The rule should be activated only for foo's with ?x greater than 4.

(defrule example2
(foo ?x)
(bar ?x ?x)
=>)

Rule example2 has two expressions which must be performed for the second pat-
tern. The first expression ensures that the ?x in the bar fact is the same as the ?x in the
foo fact. The second expression ensures that the ?x in the second field of the bar fact is
the same as the ?x in the third field of the bar fact. The expression comparing across
patterns must be done in the join network. The expression comparing ?x's within the
bar pattern can be performed in the pattern network, however.

(defrule example3
(foo ?x)
(bar ?x | all)
=>)

Rule example3 demonstrates an example of an expression that must be moved
from the pattern network to the join network. Because the second field in the bar fact
has a comparison to a value first bound in another pattern, the expression for this field
must be moved into the join network. An expression for the constant all cannot be per-
formed in the pattern network because the element can either bind to all or to some as
of yet unspecified value ?x.

(defrule example4
(foo ?x&:(numberp ?x))
=>)

Rule example4 is another example of an expression that can be evaluated in the
pattern network since all arguments of numberp can be accessed in the pattern.

(defrule example5
(bar ?y)
(foo ?x&:(> ?x ?y))
=>)

Rule example5 shows a predicate constraint which must be evaluated in the join
network because of the reference to ?y bound outside of the pattern.

The Analysis Module generates a pattern network expression for every field in a
pattern and a join network expression for every pattern. Not CEs may also have an
additional join network expression. The Analysis Module determines which

CLIPS Architecture Manual 129

expressions are performed in the pattern network and which are done in the join
network. When possible, expressions should be evaluated in the pattern network.

If a particular field has no | connective constraints, few restrictions apply to
expressions which can be evaluated in the pattern network. All tests for constants can
be evaluated in the pattern network. Predicate constraints and return value constraints
can be evaluated in the pattern network as long as references to variables in other
patterns are not made. Expressions comparing two references of the same variable
can be evaluated in the pattern network if both references are found in the same
pattern and one reference is to a bound variable. All other expressions that reference
variables outside of the pattern must be made in the join network. Note that test CEs
are always performed in the join network whereas predicate constraints and return
value constraints may be performed either in the pattern or join network depending on
the variables referenced.

If a field has an | connective constraint in it and references are made to a variable
bound in another pattern that is not bound in this pattern, all expressions for this field
must be performed in the join network. Rule example3 is an example of this type of
reference.

GLOBAL VARIABLES

None.

INTERNAL VARIABLES

DeftemplatePattern

PURPOSE: Used to indicate whether a pattern being analyzed has an
associated deftemplate.

GLOBAL FUNCTIONS

CheckExpression

PURPOSE: Verifies that variables within an expression have been ref-
erenced properly. All variables within an expression must
have been previously defined.

ARGUMENTS: A pointer to the expression, the first pattern that can be
checked for a variable reference, the current pattern and
element with which the expression is associated, and a
value indicating whether the expression is “inside” or
“outside” the pattern.

RETURNS: If no error is detected, a pointer to the expression; otherwise
null.

130 Analysis Module

CheckVariables

PURPOSE: Verifies the proper use of variables on the LHS of a rule.
Checks that fact addresses are not reused or used as vari-
ables within patterns and that variables within patterns are
referenced properly.

ARGUMENTS: The LHS representation of the patterns (which contains no
embedded and CEs or or CEs).

RETURNS: Boolean value. TRUE if an error is detected; otherwise
FALSE.

LogicalAnalysis

PURPOSE: Analyzes for the correct use of logical CEs on the LHS of a
rule. Gaps may not exist between logical CEs and logical
CEs must occurs before other CEs on the LHS of the rule.

ARGUMENTS: A pointer to the intermediate LHS representation of a rule
(which contains no embedded and CEs or or CEs).

RETURNS: -1 if an error was detected, otherwise the integer index of last
logical CE on the LHS of the rule (ranging from one to the
number of patterns in the rule). If the rule has no logical
CEs, then zero is returned.

RuleAnalysis

PURPOSE: Analyzes a set of patterns for variable bindings, performs
semantic error checking on the use of variables, and deter-
mines expressions which will be evaluated in the pattern
and join networks.

ARGUMENTS: A pointer to the intermediate LHS representation of a rule.

RETURNS: Boolean value. TRUE if a semantic error occurred; otherwise
FALSE.

VariableAnalysis

PURPOSE: Analyzes a set of patterns to determine the position of each
pattern in the rule, whether the pattern is contained within a
not CE, and if the pattern is bound to a fact address.

ARGUMENTS: The LHS representation of the patterns (which contains no
embedded and CEs or or CEs).

CLIPS Architecture Manual 131

OTHER NOTES: Creates the data structures and then calls the function
SetVariableInformation.

INTERNAL FUNCTIONS

AllVariablesInPattern

PURPOSE: Determines if all variable references made in a field can be
found within the containing pattern in previous fields. This is
important for determining whether certain expressions can
be evaluated in the pattern network as opposed to the join
network.

ARGUMENTS: A pointer to the field and the pattern and field integer index
numbers.

RETURNS: A boolean value. TRUE if all variable references are con-
tained within the pattern; otherwise FALSE.

BuildNetworkExpressions

PURPOSE: Constructs an entry for each pattern CE and test CE
associated with that pattern CE in the LHS of a rule. The
entry contains information about pattern network
expressions associated with each field and primary and
secondary join expressions associated with the pattern.

ARGUMENTS: A pointer to the intermediate LHS representation of a rule.

OTHER NOTES: Creates the data structures and then calls the function
SetRuleInformation.

CheckFactAddress

PURPOSE: Verifies that a fact address has not been used more than
once and has not been used as a variable name.

ARGUMENTS: Name of fact address variable and pattern index to which it is
bound.

RETURNS: Boolean value. TRUE if an error is detected; otherwise
FALSE.

CheckPattern

PURPOSE: Verifies that variables within a pattern have been referenced
properly (i.e. that variables have been previously bound if
they are not a binding occurrence).

132 Analysis Module

ARGUMENTS: The LHS representation of the pattern and the pattern index
of the pattern.

RETURNS: Boolean value. TRUE if an error is detected; otherwise
FALSE.

ExtractAnds

PURPOSE: Loops through a single set of subfields bound together by an
& connective constraint in a field and generates expressions
needed for testing conditions in the pattern and join network.

ARGUMENTS: A pointer to the intermediate LHS representation of the
subfields connected by the & connective constraint, the
integer index of the pattern and field in which the subfields
occur, a boolean flag indicating whether certain tests may be
performed in the pattern network, and a pointer to a data
structure in which expressions to be used in the pattern and
join network will be returned.

RETURNS: No formal return parameter. Returns expressions to be
evaluated in the pattern network and expressions to be
evaluated in the join network in a data structure passed as
an argument.

OTHER NOTES: Uses Generate Module to build subfield expressions.

FieldConversion

PURPOSE: Generates expressions to be evaluated in the pattern net-
work and join network for a field in a pattern. Uses function
ExtractAnds to generate subfield expressions, then
combines the subfield expressions together.

ARGUMENTS: A pointer to the intermediate LHS representation of the
pattern field, the integer index of the pattern and field in the
LHS of the rule, and a pointer to a data structure in which
expressions to be used in the pattern and join network will
be returned.

RETURNS: No formal return parameter. Returns expressions to be
evaluated in the pattern network and expressions to be
evaluated in the join network in a data structure passed as
an argument.

GetVariables

PURPOSE: Extracts the variable references from a single pattern.

CLIPS Architecture Manual 133

ARGUMENTS: Intermediate LHS representation of the pattern and the
pattern index number (e.g., first, second, or third pattern in
the rule).

RETURNS: A linked list of structures containing information about each
variable in the pattern.

134 Analysis Module

Generate Module

The Generate Module (generate.c) transforms the basic syntax primitives of a pattern
into expressions which will be placed in the pattern and join networks. & and |
connectives are respectively replaced with the equivalent function call to the and
function or the or function. Other primitives bear mentioning as to the type of
replacements that are made.

Access to specific variables from the join network or RHS uses the getvar function.

(getvar <pattern-m> <field-n>)

Access to specific variables from the pattern network uses the getfield function,
which only requires a field specification since the specific pattern is implied by the cur-
rent fact.

(getfield <field-m>)

Comparison of variables in the join network uses eqvar and neqvar to test,
respectively, if a set of variables is either equal or not equal. The pattern associated
with the first field in the comparison is assumed to be the pattern entering from the
RHS of the join in which the expression is located. The depth field of the join structure
is used to determine this pattern index.

(eqvar field-n pattern-x field-y)
(neqvar field-n pattern-x field-y)

Equivalent functions for the pattern network are eqfield and neqfield.

(eqfield field-m field-n)
(neqfield field-m field-n)

Constants are evaluated in the pattern network using the constant and
notconstant functions.

(constant <value>)
(notconstant <value>)

Constants are evaluated in the join network using the following functions. Note that
the calls to eq, neq, and getvar could be removed and a single-level function could
be used.

(eq (getvar <pattern> <field>) <value>)
(neq (getvar <pattern> <field>) <value>)

The pattern primitive

=(expression)

is replaced with

CLIPS Architecture Manual 135

(eq (getvar <pattern> <field>) (expression))

in the join network and with

(eq (getfield <pattern>) (expression))

in the pattern network. For an inequality comparison (i.e., ~=), neq and neqfield can
be used. The primitive expression

:(expression)

is replaced with

(expression)

The join network uses getvar calls to resolve references, and the pattern network
uses getfield to resolve references. For an constraint used in conjunction with the ~
connective constraint (e.g., ~:), the not function can be wrapped around the
expression.

GLOBAL VARIABLES

PTR_AND

PURPOSE: A pointer to the data structure for the and function.

PTR_CONSTANT

PURPOSE: A pointer to the data structure for the constant function.

PTR_EQ

PURPOSE: A pointer to the data structure for the eq function.

PTR_EQ_FIELD

PURPOSE: A pointer to the data structure for the eq_field function.

PTR_GET_FIELD

PURPOSE: A pointer to the data structure for the get_field function.

PTR_NEQ

PURPOSE: A pointer to the data structure for the neq function.

136 Generate Module

PTR_NEQ_FIELD

PURPOSE: A pointer to the data structure for the neq_field function.

PTR_NOP

PURPOSE: A pointer to the data structure for the nop function.

PTR_NOT

PURPOSE: A pointer to the data structure for the not function.

PTR_NOTCONSTANT

PURPOSE: A pointer to the data structure for the notconstant function.

PTR_OR

PURPOSE: A pointer to the data structure for the or function.

INTERNAL VARIABLES

None.

GLOBAL FUNCTIONS

CombineExpressions

PURPOSE: Combines two expressions into a single equivalent expres-
sion. Mainly serves to merge expressions containing and
and or expressions without unnecessary duplication of the
and and or expressions (i.e., two and expressions can be
merged by placing them as arguments within another and
expression, but it is more efficient to add the arguments of
one of the and expressions to the list of arguments for the
other and expression).

ARGUMENTS: Two expressions.

RETURNS: An expression.

OTHER NOTES: Modifies argument expressions to produce the final
expression, so the original expressions are no longer valid
after a call to this function. Null expressions are properly
handled.

CLIPS Architecture Manual 137

GenAnd

PURPOSE: Generates an and function call with no arguments.

RETURNS: An expression.

GenConstant

PURPOSE: Produces a constant (such as a symbol, integer, or function
call stub).

ARGUMENTS: The type and value of the constant.

RETURNS: An expression.

GenFourIntegers

PURPOSE: Generates an argument list consisting of four integers.

ARGUMENTS: Four integer indices.

RETURNS: An expression.

GenGetfield

PURPOSE: Produces an expression of the form (getfield <field-index>).

ARGUMENTS: Field index.

RETURNS: An expression.

GenGetvar

PURPOSE: Produces an expression of the form (getvar <pattern-index>
<field-index>).

ARGUMENTS: Pattern and field indices.

RETURNS: An expression.

GenGetvarValue

PURPOSE: Produces the integer indices for a getvar call.

ARGUMENTS: Pattern and field indices.

RETURNS: A void pointer value containing the encoded integer indices.

138 Generate Module

GenJNColon

PURPOSE: Generates a join network expression for testing a predicate
constraint. The subfield :<function-call> is converted to the
expression <function-call> and the subfield ~:<function-call>
is converted to the expression (not <function-call>).
References to variables in the expression are replaced with
getvar calls.

ARGUMENTS: A flag indicating whether the subfield value is negated, the
<function-call> associated with the subfield, the field and
pattern indices of the subfield to be tested, and a flag
indicating whether forward references to variables are
allowed in the expression (for deftemplate patterns only).

RETURNS: An expression.

GenJNConstant

PURPOSE: Generates a join network expression for use in comparing
subfield values to constants. The subfield <value> is
converted to the expression (eq (getvar <pattern-index>
<field-index>) <value>) and the subfield ~<value> is
converted to the expression (neq (getvar <pattern-index>
<field-index>) <value>).

ARGUMENTS: A flag indicating whether the subfield value is negated, the
type and value of the subfield, and the field and pattern
indices of the subfield to be tested.

RETURNS: An expression.

GenJNEq

PURPOSE: Generates a join network expression for testing a return
value constraint. The subfield =<function-call> is converted
to the expression (eq (getvar <pattern-index> <field-index>)
<function-call>) and the subfield ~=<function-call> is
converted to the expression (neq (getvar <pattern-index>
<field-index>) <function-call>). References to variables in the
expression are replaced with getvar calls.

ARGUMENTS: A flag indicating whether the subfield value is negated, the
<function-call> associated with the subfield, the field and
pattern indices of the subfield to be tested, and a flag
indicating whether forward references to variables are
allowed in the expression (for deftemplate patterns only).

RETURNS: An expression.

CLIPS Architecture Manual 139

GenJNVariableComparison

PURPOSE: Generates a join network expression testing the equality or
inequality of variables bound to the fields of a pattern.
Produces expressions of the form (eqvars <field-index-1>
<pattern-index-2> <field-index-2>) when two fields must be
equal and (neqvars <field-index-1> <pattern-index-1>
<field-index-2>) when two fields must be unequal. The
pattern associated with <field-index-1> in the comparison is
assumed to be the pattern entering from the RHS of the join
in which the expression is located. The depth field of the join
structure is used to determine this pattern index.

ARGUMENTS: A flag indicating whether the variable is negated, the name
of the variable, the pattern and field indices representing the
pattern and field in which the variable was found, and a flag
indicating whether forward references to variables are
allowed in the expression (for deftemplate patterns only).

RETURNS: An expression.

GenOr

PURPOSE: Generates an or function call with no arguments.

RETURNS: An expression.

GenPNColon

PURPOSE: Generates a pattern network expression for testing a
predicate constraint. The subfield :<function-call> is
converted to the expression <function-call> and the subfield
~:<function-call> is converted to the expression (not
<function-call>). References to variables in the expression
are replaced with getfield calls.

ARGUMENTS: A flag indicating whether the subfield value is negated, the
<function-call> associated with the subfield, and the field
and pattern indices of the subfield to be tested.

RETURNS: An expression.

GenPNConstant

PURPOSE: Generates a pattern network expression for use in
comparing subfield values to constants. The subfield
<value> is converted to the expression (constant <value>)
and the subfield ~<value> is converted to the expression
(notconstant value).

140 Generate Module

ARGUMENTS: A flag indicating whether the subfield value is negated and
the type and value of the subfield.

RETURNS: An expression.

GenPNEq

PURPOSE: Generates a pattern network expression for testing a return
value constraint. The subfield =<function-call> is converted
to the expression (eq (getfield <field-index>) <function-call>)
and the subfield ~=<function-call> is converted to the
expression (neq (getfield <field-index>) <function-call>).
References to variables in the expression are replaced with
getfield calls.

ARGUMENTS: A flag indicating whether the subfield value is negated, the
<function-call> associated with the subfield, and the field
and pattern indices of the subfield to be tested.

RETURNS: An expression.

GenPNVariableComparison

PURPOSE: Generates a pattern network expression testing the equality
or inequality of variables bound to the fields of a pattern.
Produces expressions of the form (eqfield <field-index-1>
<field-index-2>) when two fields must be equal and (neqfield
<field-index-1> <field-index-2>) when two fields must be
unequal.

ARGUMENTS: A flag indicating whether the variable is negated, the name
of the variable, and the pattern and field indices representing
the pattern and field in which the variable was found.

RETURNS: An expression.

GenTwoIntegers

PURPOSE: Generates an argument list consisting of two integers.

ARGUMENTS: Two integer indices.

RETURNS: An expression.

GetfieldReplace

PURPOSE: Replaces variable references in an expression with appro-
priate getfield calls.

CLIPS Architecture Manual 141

ARGUMENTS: A pointer to the expression to be modified and pattern and
field indices representing the pattern and field from which
the expression was extracted.

RETURNS: Nothing; however, the expression passed as a parameter is
modified.

GetvarReplace

PURPOSE: Replaces variable references in an expression with appro-
priate getvar calls.

ARGUMENTS: A pointer to the expression to be modified, the pattern and
field indices representing the pattern and field from which
the expression was extracted, and a flag indicating whether
forward references to variables are allowed in the expres-
sion (for deftemplate patterns only).

RETURNS: Nothing; however, the expression passed as a parameter is
modified.

InitGenModule

PURPOSE: Initializes the global Function Pointers by calling
FindFunction to locate each of the functions to be later
referenced and setting the global value to the return value.

INTERNAL FUNCTIONS

None.

142 Generate Module

Build Module

Information and expressions generated during the analysis phase of rule compilation
have to be integrated into the pattern and join networks. This integration takes advan-
tage of the potential to share common expressions among patterns and joins where
possible. The Build Module (build.c) uses information created by the Analysis Module
and accessed through the Variable Manager Module to add a rule into the rule
network consisting of the pattern and join networks.

The pattern network is conceptually represented as a tree structure. The root node
represents the starting point of a pattern match before any elements of either the fact or
pattern network have been “consumed.” The set of nodes after the root node repre-
sents all pattern expressions found as the first field in a pattern. The children of these
nodes represent all second fields found in patterns. Each level of the pattern tree
represents the set of all fields of a particular position in all patterns. As the pattern tree
is traversed downward, fact fields are consumed as expressions are evaluated. Stan-
dard single field expressions consume one fact field when exited traversing downward
in the tree. Multifield nodes consume all combinations of zero or more fact fields.

The pattern network structure allows patterns to share identical sequences of fields
beginning at the front of the pattern. The two patterns

(data red ?)
(data green ?)

would share a common pattern node for their first field, data. If the pattern

(data green blue ?)

were now added, it would share the common pattern node, data, with the two patterns
above. In addition, it would share the pattern node, green, with the second pattern.

For a given field in a pattern to be shared with a currently existing pattern field, two
conditions must be met. First, all previous fields in the pattern must have been shared
in the pattern network. Second, the expression generated for the field of the pattern
must be identical to an expression already in place at the current level of addition in
the pattern network. Note that variables generally do not create expressions that are
tested in the pattern network unless they refer to a variable previously bound in the
same pattern.

Sharing in the join network for a particular join of a rule occurs under three condi-
tions. First, all previous joins must be shared. Second, the expression generated for
the join must be identical to an expression already in place at the current level of addi-
tion in the join network. Third, the join to be shared must be entered from the same
location in the pattern network. The following two rules illustrate some examples of
sharing:

(defrule example1
(data red ?x)
(data green ?x)
=>)

(defrule example2
(data red ?x)

CLIPS Architecture Manual 143

(data blue ?x)
=>)

Many examples of pattern sharing occur. All four patterns share a common node
testing for the constant value data. In addition, the first pattern in both rules can share
all pattern nodes. The join for the first pattern in both rules also can be shared. The
second join for both rules, however, cannot be shared. The expression for the second
join in both rules is identical (i.e., (eqvars 2 1 2)); however, the joins must be entered
from different patterns and, therefore, cannot be shared.

The following rule:

(defrule example3
(data red ?y)
(data blue ?y)
(info ?z)
=>)

would be able to share nodes in the pattern and join networks. Its first two patterns
already exist in the pattern network. The third pattern would require the addition of two
new nodes in the pattern network. The first two joins for this rule could be shared with
the joins used for rule example2. A third join for rule example3 would have to be
added for the last pattern. Note that the use of different variable names does not affect
the ability to share. As long as the expressions generated are identical, sharing will
occur. Variable names serve only as positional references.

Information about sharing in join network is displayed when a rule is being loaded
if the watch compilations flag is on. New additions to the join network is signaled with
+j and reuse of existing nodes is indicated with =j.

The CLIPS join topology differs slightly from the “standard” Rete topology used by
OPS5. First, each pattern corresponds to its own join. In standard Rete topology, the
first two patterns will form a two-input join. If only one pattern exists, this pattern will
form a single one-input join. Thus, using this topology, the number of joins needed for
n patterns is n - 1 with a minimum of 1 join. In CLIPS, the first pattern always creates a
one-input join. This simplifies the algorithms used considerably since a pattern always
enters the join from the RHS. Given this simplification, the beta memory of a join can
never be associated with a pattern contained in not CE.

Standard Rete topology also makes a test in the pattern network for the length of a
fact. The use of multifield variables in CLIPS eliminates much of the usefulness of
making this test. Each level of the pattern network corresponds directly to specific
indexed fields in a pattern.

GLOBAL VARIABLES

None.

INTERNAL VARIABLES

PatternNetworkPointer

PURPOSE: A pointer to the root node of pattern network. This provides
access to the entire rule network.

144 Build Module

GLOBAL FUNCTIONS

ConstructJoins

PURPOSE: Integrates a set of pattern and join tests associated with a
rule into the pattern and join networks.

ARGUMENTS: A pointer to the pointer of the top node in the pattern network
and a pointer to the structure storing information about the
rule to be added.

RETURNS: A pointer to the last join that was added.

OTHER NOTES: Prints informational messages to indicate join network
sharing. If a new node has to be added to the join network, +j
is printed. If a join node can be reused, =j is printed.
Information about pattern and join expressions is retrieved
from the Variable Manager Module.

DetachJoins

PURPOSE: Removes a join node and all of its parent nodes from the join
network. Nodes are only removed if they are no longer
shared (i.e. a join that has more than one child node is
shared). Any partial matches associated with the join are
also removed. A rule's joins are typically removed by
removing the bottom most join used by the rule and then
removing any parent joins which are not shared by other
rules.

ARGUMENTS: A pointer to a join node.

NetworkPointer

PURPOSE: Returns the value of the PatternNetworkPointer.

RETURNS: A pointer to a pattern node.

SetNetworkPointer

PURPOSE: Sets the value of the PatternNetworkPointer.

ARGUMENTS: A pointer to a pattern node.

CLIPS Architecture Manual 145

INTERNAL FUNCTIONS

DetachPattern

PURPOSE: Removes a pattern node and all of its parent nodes from the
pattern network. Nodes are only removed if they are no
longer shared (i.e. a pattern node that has more than one
child node is shared). A pattern from a rule is typically
removed by removing the bottom most pattern node used by
the pattern and then removing any parent nodes which are
not shared by other patterns.

ARGUMENTS: A pointer to a pattern node.

PlacePattern

PURPOSE: Integrates a pattern into the pattern network.

ARGUMENTS: Current level in the pattern network at which the new pattern
is being integrated, the previous level in the pattern network
at which the new pattern has already been integrated, an
integer index indicating which pattern from the rule is being
integrated, an integer index indicating which field of the
pattern is being integrated, an integer value indicating the
number of fields in the pattern, and a pointer to the variable
which points to the root node in the pattern network.
Information about pattern expressions is obtained from the
Variable Manager Module.

RETURNS: A pointer to the last pattern node in the pattern network for
the pattern just added.

RemoveIntranetworkLink

PURPOSE: Removes the link between a join node in the join network
and its corresponding pattern node in the pattern network. If
the pattern node is then no longer associated with any other
joins, it is removed using the function DetachPattern.

ARGUMENTS: A pointer to a join node.

ReuseJoin

PURPOSE: Determines whether a join exists that can be reused for the
join currently being added to the join network.

ARGUMENTS: A pointer to the list of possible joins that can be reused, a
flag indicating whether the join to be added is the first join for
the rule, a flag indicating whether the pattern associated with

146 Build Module

the join is contained with a not CE, the primary and
secondary join expressions for the join to be added, and a
pointer to the list of joins connected to the pattern associated
with the join being added.

RETURNS: A pointer to the join that can be reused if one exists;
otherwise NULL.

CLIPS Architecture Manual 147

Drive Module

The Drive Module (drive.c) contains the major functionality for updating the join
network when a fact has been asserted into the knowledge base. This update will also
be referred to as “driving” a set of partial matches through the join network. When a
fact has matched a pattern in the pattern network, a partial match consisting of that
single fact is created. This partial match is then sent to each join in the join network
connected to that pattern. The partial match “enters” through the RHS of the join. De-
pending upon the type of the join (i.e. associated with the first conditional element, a
not conditional element, etc.), the entering partial match will be compared with the
beta memory of the join. New partial matches may be created from this comparison
and sent to the descendent joins of the current join. New partial matches would enter
from the LHS of the descendent joins. Note that all pattern conditional elements enter
joins from the RHS, but all joins enter other joins from the LHS. The algorithm for
driving partial matches through the join network is described as follows.

The function Drive handles high-level updating of the join network when a fact is
asserted. If the join being updated is a terminator join (i.e., the last join of a rule which
connects the join to the actions of a rule), a rule activation has occurred. An activation
is added to the agenda and the current level of recursive descent into the join network
is terminated. If the join was entered from the LHS, the partial match is stored in the
beta memory of the join. Partial matches entering from the RHS are already stored in
the alpha memory in the pattern network.

If the join being updated is a single-entry join (i.e. the join associated with the first
conditional element in a rule), then the single-entry join algorithm is used for updating
the join network. First, it is determined if the primary join expression evaluates to TRUE
or FALSE. If no expression exists, the evaluation is automatically TRUE. If the
expression is FALSE, the join update is completed.

If LHS entry is from a pattern conditional element, a copy of the alpha partial
match is made and sent to all the child joins of the current join using the Drive
algorithm.

If LHS entry is from a not conditional element and the count of facts matching the
CE is greater than zero, then the count associated with the join is incremented by one.
In effect, other facts are already preventing the not CE from being satisfied, so just
keep track of the fact that there is one more fact prevent the CE from being satisfied. If,
however, the count was less than zero (indicating that previous facts had been
asserted which matched the CE), the join's count is set to one and all partial matches
containing the pseudo-fact ID which was stored as the join's count are removed from
all of the descendent joins of the current join.

For double-entry joins, a loop is used to compare each set of partial matches in the
opposite memory (beta memory for RHS entry and alpha memory for LHS entry) to the
entering partial match. If the join was entered from the RHS, each partial match in the
beta memory is compared to the entering partial match. If the join was entered from the
LHS, each partial match in the alpha memory (stored in the pattern network) is
compared to the entering partial match. For each pair of partial matches that is com-
pared, the primary join expression is evaluated for its boolean value. If no expression
exists, the evaluation is considered TRUE. If the join expression evaluates to TRUE,
one of three algorithms is performed. The three algorithms correspond to the following
cases: positive RHS entry and positive LHS entry, positive RHS entry and negative
LHS entry (meaning the conditional element associated with this join is a not

CLIPS Architecture Manual 149

conditional element) with the partial match entering from the LHS, and positive RHS
entry and negative LHS entry with the partial match entering from the RHS. Algorithms
for each of these cases are described below.

The double-entry join algorithm for joins with positive RHS entry and positive LHS
entry works as follows. The beta partial match and alpha partial match are merged to
form a new partial match with the alpha partial match attached to the end of the beta
partial match. This new partial match is then sent to all the child joins of the current join
using the Drive algorithm.

The double-entry join algorithm for joins associated with a not conditional element
in which a partial match enters from the LHS works as follows. The count value
associated with the beta partial match is incremented by one. This count is originally
set to zero when the beta partial match enters the join. If it is still zero at completion of
all memory comparisons, a partial match will be created by merging the beta partial
match with a pseudo-fact ID.

The double-entry join algorithm for joins associated with a not conditional element
in which a partial match enters from the RHS works as follows. If the count associated
with the beta memory partial match is greater than zero, increment the count by one. If
the count was less than zero, set the beta memory count to one and remove all partial
matches containing the pseudo-fact ID previously associated with the beta memory
partial match from all of the descendent joins of the current join

Upon completion of the alpha and beta memory comparisons, a final test is
performed. If the RHS join entry is associated with a not conditional element, the join
was entered from the LHS, and the number of alpha memory partial matches which
satisfied the primary join expression was zero, then a new partial match may need to
be created. The secondary join expression is evaluated. If it evaluates to TRUE, a
partial match consisting of a pseudo-fact identification (ID) number and the beta
memory partial match is created. The pseudo-fact identification ID number is negative.
The count value of the beta memory partial match is set to this pseudo-fact ID. The
count value represents the number of alpha memory partial matches which satisfied
the primary join expression for a particular beta memory partial match. A negative
value indicates that no alpha partial matches satisfied the join expression. The new
partial match create from the pseudo-fact ID and the beta memory partial match is sent
to all the descendent joins of the current join using the Drive algorithm. Note that, if
the beta memory count had been greater than zero, this would have indicated that
facts in the alpha memory of the join conflicted with the beta memory and prevented a
partial match for this join.

As an example, consider the following rule:

(defrule match ""
 (point ?x ?)
 (point ? ?x)
 =>)

The following diagram illustrates the join network for this rule. The two boxes repre-
sent joins. The top box is the join associated with the first pattern CE (point ?x ?). The
bottom box is the join associated with the second pattern CE (point ? ?x). The line
terminated with a dark circle to the left of each join represents the contents of the beta
memory of the joins. As shown here, the beta memory for both joins is empty. The cir-
cle represents the pattern node signifying the completion of the pattern (point ? ?). This
pattern is used for both (point ?x ?) and (point ? ?x) since variables in this case cannot

150 Drive Module

be checked in the pattern network.The alpha memory is represented by the line termi-
nated with a dark circle connected to the right of the pattern node. The alpha memory
is also empty. Note that the expressions associated with each join are not shown. The
top join has no expression and will allow any partial match to filter down to the next
join. The bottom join must verify that the value of the second field of the fact bound to
the first pattern is equal to the value of the third field of the fact bound to the second
pattern. This diagram assumes that the match rule is the only rule in the rule network
(hence, no sharing). Count values for partial matches are not shown since these are
applicable only to joins that are attached to not CEs. The terminator join for the rule is
not shown in the diagram. This last join of the rule stores the partial matches which
satisfy all CEs of the rule. A link between these partial matches and their
corresponding activations on the agenda is also maintained.

(point ? ?)

Suppose that the following fact were entered into the fact-list:

f-1 (point 3 4)

This fact would match the pattern (point ? ?) and be placed in the alpha memory of the
pattern node. The pattern node must then pass this partial match to the two joins to
which it is connected. First, the partial match is sent to the top join as shown below.

(point ? ?)

f-1

CLIPS Architecture Manual 151

Since the top join has no expression, the partial match is sent down to the next join.

f-1

f-1

(point ? ?)

A comparison now takes place between the partial match in the beta memory and
all partial matches in the alpha memory associated with this join. Currently, only one
partial match is in the alpha memory. For the second join, the partial match in the
alpha memory is the fact bound to the first pattern, and the partial match in the beta
memory is the fact bound to the second pattern. Evaluating the join expression will
produce a FALSE result since the value bound to ?x in the first pattern is 3 and the
value bound to ?x in the second pattern is 4.

f-1

f-1

(point ? ?)

The process of updating the top join is complete. Now the partial match in the alpha
memory is sent to the bottom join.

152 Drive Module

f-1

f-1

(point ? ?)

Once again, a comparison is made between the facts to check proper variable
bindings. As before, this comparison will fail.

f-1

f-1

(point ? ?)

Suppose that an additional fact were entered into the fact-list.

f-2 (point 4 3)

This fact would match the pattern (point ? ?) and be placed in the alpha memory of the
pattern node. The pattern node must then pass this partial match to the two joins to
which it is connected. First, the partial match is sent to the top join as shown following.

CLIPS Architecture Manual 153

f-1 f-2

f-1

(point ? ?)

Since the top join has no expression, the partial match is sent down to the next join.

f-2

f-1 f-2

f-1

(point ? ?)

A comparison now takes place between the partial match in the beta memory and
all partial matches in the alpha memory associated with this join. The first comparison
is between f-2 in beta memory and f-1 in alpha memory. This comparison succeeds.
The value of ?x in f-1 (the second field) is 3 and the value of ?x in f-2 (the third field) is
also 3. A partial match consisting of f-1 and f-2 is created and sent to the next join.
Since this next join is a terminator join, the rule that is matched has been satisfied with
f-1 bound to the first pattern and f-2 bound to the second pattern. This activation would
be placed on the agenda.

154 Drive Module

RULE MATCH SATISFIED

f-2

f-1 f-2

f-1

(point ? ?)

f-2f-1

The next comparison now takes place. The value of ?x in the first pattern (the sec-
ond field of f-2) is 4; however, the value of ?x in the second pattern (the third field of
f-2) is 3. The comparison fails and no new partial match is created.

f-2

f-2

f-1

(point ? ?)

f-1

The process of updating the top join is complete. Now the partial match in the alpha
memory is sent to the bottom join.

CLIPS Architecture Manual 155

f-2

f-2

f-1

(point ? ?)

f-1

A comparison now takes place between the partial match in the alpha memory
associated with this join and all partial matches in the beta memory of the join. The first
comparison is between f-1 in beta memory and f-2 in alpha memory. This comparison
succeeds. The value of ?x in the first pattern (the second field of f-2) is 4 and the value
of ?x in the second pattern (the third field of f-1) is also 4. A partial match consisting of
f-2 and f-1 is created and sent to the next join. Since this next join is a terminator join,
the rule that is matched has been satisfied with f-2 bound to the first pattern and f-1
bound to the second pattern. This activation would be placed on the agenda.

f-2

f-2

f-1

(point ? ?)

f-1

RULE MATCH SATISFIED

f-1f-2

The next comparison now takes place. The value of ?x in the first pattern (the sec-
ond field of f-2) is 4; however, the value of ?x in the second pattern (the third field of
f-2) is 3. The comparison fails and no new partial match is created.

156 Drive Module

f-2

f-2

f-1

(point ? ?)

f-1

The process of updating the bottom join for the addition of f-2 is complete. Notice
that the beta memory of the top join never contains any partial matches. Joins that cor-
respond to the first pattern of a rule will never make use of the beta memory.

GLOBAL VARIABLES

IncrementalReset

PURPOSE: Boolean flag. If TRUE, an incremental reset is performed
whenever a new rule is defined.

IncrementalResetFlag

PURPOSE: Boolean flag. If TRUE, an incremental reset is currently being
performed.

INTERNAL VARIABLES

None.

GLOBAL FUNCTIONS

Drive

PURPOSE: Primary routine for driving a partial match through the join
network.

ARGUMENTS: A pointer to a partial match, a pointer to the join which the
partial match is entering, and the side of the join being
entered (an integer value representing either the LHS or
RHS of the join).

OTHER NOTES: Calls the functions AddActivation, EmptyDrive,
EvaluateJoinExpression, PPDrive, PNLDrive, and

CLIPS Architecture Manual 157

PNRDrive as necessary to process the addition of the
partial match.

EvaluateJoinExpression

PURPOSE: Evaluates join expressions. Performs a faster evaluation for
join expressions than if EvaluateExpression were used
directly. Function calls to eq_vars, neq_vars, and, and or
are evaluated directly. All other function calls are evaluated
using EvaluateExpression.

ARGUMENTS: A pointer to the expression to be evaluated, pointers to the
partial matches from the alpha and beta memory associated
with the expression, and a pointer to the join associated with
the expression.

RETURNS: Boolean value. The result of the evaluation of the
expression.

GetIncrementalReset

PURPOSE: Returns the current value of the IncrementalReset flag.

RETURNS: A boolean value.

PNLDrive

PURPOSE: Handles the entry of a partial match from the LHS of a join
that has positive LHS entry and negative RHS entry
(meaning the conditional element associated with this join is
a not conditional element). An new partial match is created
by combining the match from the beta memory with a
“pseudo” partial match corresponding to the facts which
didn't match the not CE. Once merged, the new partial
match is sent to each child join of the join from which the
merge took place.

ARGUMENTS: A pointer to the join being processed and a pointer to the
partial match from the join's beta memory that entered from
the LHS of the join.

SetIncrementalReset

PURPOSE: Sets the current value of the IncrementalReset flag.

ARGUMENTS: A boolean value (the new value of the flag).

RETURNS: A boolean value (the old value of the flag).

158 Drive Module

INTERNAL FUNCTIONS

ClearLowerBetaMemory

PURPOSE: Removes all partial matches from the beta memory of a join
and all joins which descend from that join.

ARGUMENTS: A pointer to the join at which the removal of partial matches
should begin.

EmptyDrive

PURPOSE: Handles the entry of a alpha memory partial match from the
RHS of a join that is the first join of a rule (i.e. a join that
cannot be entered from the LHS). Both positive and negative
RHS join entry are handled.

ARGUMENTS: A pointer to the join being processed and a pointer to the
partial match from the join's alpha memory that entered from
the RHS of the join.

JoinNetErrorMessage

PURPOSE: Prints an informational message indicating which join of a
rule generated an error when a join expression was being
evaluated.

ARGUMENTS: A pointer to the join being processed when the error
occurred.

PNRDrive

PURPOSE: Handles the entry of a partial match from the RHS of a join
that has positive LHS entry and negative RHS entry
(meaning the conditional element associated with this join is
a not conditional element). Entry of the alpha memory partial
match will cause the count value of the associated beta
memory partial match to be incremented. This in turn may
cause partial matches associated with the beta memory
partial match to be removed from the network.

ARGUMENTS: A pointer to the join being processed and a pointer to the
partial match from the join's beta memory that entered from
the LHS of the join.

PPDrive

PURPOSE: Handles the merging of an alpha memory partial match with
a beta memory partial match for a join that has positive LHS

CLIPS Architecture Manual 159

entry and positive RHS entry. The partial matches being
merged have previously been checked to determine that
they satisfy the constraints for the join. Once merged, the
new partial match is sent to each child join of the join from
which the merge took place.

ARGUMENTS: Pointers to the partial matches from the alpha and beta
memory being merged and a pointer to the join from which
the partial matches originated.

160 Drive Module

Engine Module

The Engine Module (engine.c) provides functionality for browsing, maintaining,
updating, and executing the agenda.

GLOBAL VARIABLES

AgendaChanged

PURPOSE: Boolean flag. If TRUE, indicates that the Agenda has been
altered. Updated to TRUE whenever an activation is added
to, removed from, or moved on the Agenda.

DeletedFiringRule

PURPOSE: Boolean value. If TRUE, the currently executing rule has
been deleted.

ExecutingRule

PURPOSE: A pointer to the rule information data structure of the
currently executing rule. If NULL, then no rules are
executing.

HaltRules

PURPOSE: Boolean value. If TRUE, rule execution should be halted.

TheLogicalJoin

PURPOSE: A pointer to the join for a rule at which the partial matches
needed to set up logical dependencies are stored. If a rule
contains no logical conditional elements, then this value is
NULL.

INTERNAL VARIABLES

Agenda

PURPOSE: Pointer to the list of rule activations which have not yet fired.

CurrentTimetag

PURPOSE: Integer value used to provide a unique identification number
for each activation added to the Agenda. Initially zero, this
value is incremented by one each time an activation is
added to the agenda.

CLIPS Architecture Manual 161

ListOfRunFunctions

PURPOSE: A list of functions which are to be executed after each rule
firing.

NumberOfActivations

PURPOSE: Integer value representing the number of activations
currently on the Agenda.

RuleFiring

PURPOSE: A pointer to the name of the currently executing rule.

SalienceEvaluation

PURPOSE: An integer value representing the current type of salience
evaluation (either when defined, when activated, or every
cycle).

Strategy

PURPOSE: An integer value representing the current conflict resolution
strategy (either depth, breadth, lex, mea, complexity,
simplicity, or random).

WatchActivations

PURPOSE: Boolean flag. When TRUE, enables printing of messages
indicating addition and removal of activations to the
Agenda.

WatchStatistics

PURPOSE: Boolean flag. When TRUE, statistical information such as the
number of rule firings is printed after the run command is
executed.

GLOBAL FUNCTIONS

ActivationBasis

PURPOSE: Returns the partial match associated with an activation.

ARGUMENTS: A generic pointer to an activation.

RETURNS: A pointer to a partial match.

162 Engine Module

AddActivation

PURPOSE: Creates a rule activation to be added to the Agenda and
links the activation with its associated partial match. The
function PlaceActivation is then called to place the
activation on the Agenda. Typically called when all patterns
on the LHS of a rule have been satisfied.

ARGUMENTS: The last join of the rule associated with the activation and a
pointer to the partial match which activated the rule.

AddBreakpoint

PURPOSE: Adds a breakpoint for the specified rule.

ARGUMENTS: A generic pointer to a defrule structure.

AddRunFunction

PURPOSE: Adds a function to the ListOfRunFunctions.

ARGUMENTS: A name to be associated with the function, a pointer to the
function, and the priority of the run item.

ClearRuleFromAgenda

PURPOSE: Removes all activations of a specified rule from the Agenda.

ARGUMENTS: Name of the rule.

DefruleHasBreakpoint

PURPOSE: Indicates whether the specified rule has a breakpoint set.

ARGUMENTS: A generic pointer to a defrule structure.

RETURNS: Boolean value. TRUE if the defrule has a breakpoint set,
otherwise FALSE.

DeleteActivation

PURPOSE: Deletes the specified activation from the agenda.

ARGUMENTS: A pointer to an activation or NULL to remove all activations.

RETURNS: Boolean Value. TRUE, if the specified activation exists and
was deleted from the agenda, otherwise FALSE.

CLIPS Architecture Manual 163

GetActivationName

PURPOSE: Returns the name of the rule associated with an activation.

ARGUMENTS: A generic pointer to an activation.

RETURNS: The name of a rule.

GetActivationPPForm

PURPOSE: Returns the pretty print representation of an activation.

ARGUMENTS: A character buffer in which to store the pretty print
representation, the size of the buffer in characters, and a
generic pointer to an activation.

RETURNS: No return value. The pretty print representation is stored in
the character buffer passed as an argument.

GetActivationSalience

PURPOSE: Returns the salience value of an activation.

ARGUMENTS: A generic pointer to an activation.

RETURNS: An integer value.

GetAgendaChanged

PURPOSE: Returns the value of the variable AgendaChanged.

RETURNS: Boolean value (TRUE or FALSE).

GetNextActivation

PURPOSE: Returns an activation from the Agenda.

ARGUMENTS: A generic pointer to an activation. If the pointer is NULL, the
first activation in the Agenda is returned. If the pointer is not
NULL, the next activation after the pointer is returned.

RETURNS: A generic pointer to an activation. A NULL pointer indicates
that there are no further activations in the Agenda.

GetNumberOfActivations

PURPOSE: Returns the value of the variable NumberOfActivations.

RETURNS: An integer value.

164 Engine Module

GetRuleFiring

PURPOSE: Returns the value of the variable RuleFiring.

RETURNS: The name of a rule.

GetSalienceEvaluation

PURPOSE: Returns the value of the variable SalienceEvaluation.

RETURNS: An integer value.

GetStrategy

PURPOSE: Returns the value of the variable Strategy.

RETURNS: An integer value.

InitializeEngine

PURPOSE: Initializes the activations and statistics watch items.

ListAgenda

PURPOSE: Lists all of the activations on the agenda to the logical name
wdisplay.

ListBreakpoints

PURPOSE: Lists all of the breakpoints to the logical name wdisplay.

MoveActivationToTop

PURPOSE: Moves the specified activation in the agenda to the top of the
agenda.

ARGUMENTS: A pointer to an activation.

RETURNS: Boolean Value. TRUE, if the specified activation exists and
was moved to the top of the agenda, otherwise FALSE.

PrintActivation

PURPOSE: Prints an activation in a “pretty” format. Salience, rule name,
and the partial match which activated the rule are printed.

ARGUMENTS: Logical name to which output is sent and a pointer to an
activation.

CLIPS Architecture Manual 165

PrintCRSVActivation

PURPOSE: Prints an activation in a CRSV trace file compatible format.

ARGUMENTS: Logical name to which output is sent and a pointer to an
activation.

RefreshAgenda

PURPOSE: Recomputes the salience values for all activations on the
Agenda and then reorders the Agenda.

RemoveActivation

PURPOSE: Returns an activation and its associated data structures to
the Memory Manager. Links to other activations and partial
matches may also be updated.

ARGUMENTS: A pointer to an activation, a flag indicating whether the links
between activations on the agenda should be updated, and
a flag indicating whether the links between the activation
and its corresponding partial match should be updated.

ReorderAgenda

PURPOSE: Reorders the Agenda based on the current conflict
resolution strategy.

RemoveAllActivations

PURPOSE: Removes all activations from the Agenda.

RemoveAllBreakpoints

PURPOSE: Removes all breakpoints.

RemoveBreakpoint

PURPOSE: Removes a breakpoint for the specified rule.

ARGUMENTS: A generic pointer to a defrule structure.

RETURNS: Boolean value. TRUE if the breakpoint was found and
removed, otherwise FALSE.

RemoveRunFunction

PURPOSE: Removes a function from the ListOfRunFunctions.

166 Engine Module

ARGUMENTS: Name associated with the run function.

RunCLIPS

PURPOSE: Begins execution of rules on the Agenda.

ARGUMENTS: An integer representing the maximum number of rules that
can be fired. If run limit is less than zero, rules will be exe-
cuted until the agenda is empty. If run limit is greater than
zero, rules will be executed until either the Agenda is empty
or the run limit has been reached.

RETURNS: Number of rules fired.

SetActivationSalience

PURPOSE: Sets the salience value of an activation.

ARGUMENTS: A generic pointer to an activation and the new salience
value.

RETURNS: The old salience value.

SetAgendaChanged

PURPOSE: Sets the value of the variable AgendaChanged.

ARGUMENTS: Boolean value (TRUE or FALSE).

SetSalienceEvaluation

PURPOSE: Sets the value of the variable SalienceEvaluation.

ARGUMENTS: An integer value representing the new type of salience
evaluation (either when defined, when activated, or every
cycle).

RETURNS: An integer value representing the old type of salience
evaluation.

SetStrategy

PURPOSE: Sets the value of the variable Strategy and then calls the
ReorderAgenda function to update the Agenda.

ARGUMENTS: An integer value representing the new conflict resolution
strategy (either depth, breadth, lex, mea, complexity,
simplicity, or random).

CLIPS Architecture Manual 167

RETURNS: An integer value representing the old conflict resolution
strategy.

INTERNAL FUNCTIONS

CompareBindings

PURPOSE: Compares two activations using the lex conflict resolution
strategy to determine which activation should be placed first
on the agenda. This lexicographic comparison function is
used for both the lex and mea strategies.

ARGUMENTS: Two pointers to the activations to be compared.

RETURNS: An integer value indicating whether the first activation has
higher, lesser priority, or equivalent priority to the second
activation.

PlaceActivation

PURPOSE: Coordinates placement of an activation on the Agenda
based on the current conflict resolution strategy.

ARGUMENTS: A pointer to an activation.

PlaceBreadthActivation

PURPOSE: Determines where an activation should be placed on the
Agenda for the breadth conflict resolution strategy.

ARGUMENTS: A pointer to an activation.

RETURNS: A pointer to an activation already on the Agenda after which
the new activation should be placed. If NULL, then the
activation should be placed at the beginning of the Agenda.

PlaceComplexityActivation

PURPOSE: Determines where an activation should be placed on the
Agenda for the complexity conflict resolution strategy.

ARGUMENTS: A pointer to an activation.

RETURNS: A pointer to an activation already on the Agenda after which
the new activation should be placed. If NULL, then the
activation should be placed at the beginning of the Agenda.

168 Engine Module

PlaceDepthActivation

PURPOSE: Determines where an activation should be placed on the
Agenda for the depth conflict resolution strategy.

ARGUMENTS: A pointer to an activation.

RETURNS: A pointer to an activation already on the Agenda after which
the new activation should be placed. If NULL, then the
activation should be placed at the beginning of the Agenda.

PlaceLEXActivation

PURPOSE: Determines where an activation should be placed on the
Agenda for the lex conflict resolution strategy.

ARGUMENTS: A pointer to an activation.

RETURNS: A pointer to an activation already on the Agenda after which
the new activation should be placed. If NULL, then the
activation should be placed at the beginning of the Agenda.

PlaceMEAActivation

PURPOSE: Determines where an activation should be placed on the
Agenda for the mea conflict resolution strategy.

ARGUMENTS: A pointer to an activation.

RETURNS: A pointer to an activation already on the Agenda after which
the new activation should be placed. If NULL, then the
activation should be placed at the beginning of the Agenda.

PlaceRandomActivation

PURPOSE: Determines where an activation should be placed on the
Agenda for the random conflict resolution strategy.

ARGUMENTS: A pointer to an activation.

RETURNS: A pointer to an activation already on the Agenda after which
the new activation should be placed. If NULL, then the
activation should be placed at the beginning of the Agenda.

PlaceSimplicityActivation

PURPOSE: Determines where an activation should be placed on the
Agenda for the simplicity conflict resolution strategy.

CLIPS Architecture Manual 169

ARGUMENTS: A pointer to an activation.

RETURNS: A pointer to an activation already on the Agenda after which
the new activation should be placed. If NULL, then the
activation should be placed at the beginning of the Agenda.

SortBindings

PURPOSE: Copies a partial match and then sorts the fact-indices in the
copied partial match in ascending order.

ARGUMENTS: A pointer to a partial match.

RETURNS: A copied version of the partial match with sorted fact-indices.

170 Engine Module

Match Module

The Match Module (match.c) contains the functionality necessary for traversing the
pattern network. The pattern network determines which patterns a fact has matched.
The pattern network is organized as a tree structure. Pattern network levels corre-
spond directly to the sequential order of fields found in patterns. That is, all pattern
constraints occurring in the first field of a pattern are found in the first level of the
pattern network. All pattern constraints that occur in the second field of a pattern are
found in the second level of the pattern network. The leaf nodes of the pattern network
represent the end of a pattern. These leaf nodes connect the pattern network to the
join network.

Each pattern node contains several pieces of information. A pointer is stored to the
next and previous sibling nodes as well as a pointer to the parent node and the first
child node. The child nodes of a pattern node can be determined by following the first
child node value and then following the next sibling node value of each child. Each
pattern node contains information about whether it is intended to match a single field
or multiple fields of a fact. Only multifield variables and wildcards can match multiple
fields. Each node may also contain an expression which, when evaluated, determines
whether a field has satisfied a pattern constraint. In addition, an end-of-pattern leaf
node contains a pointer to an alpha memory which stores a list of all facts that matched
the pattern and a pointer to the list of joins in the join network that are to be entered
from the leaf node when a fact has matched the pattern.

As an example, the following patterns (possibly found in one or more rules)

(fact $?)
(fact $?x red $?y)
(item ?x)
(item ?y)

would produce the following pattern network:

End of Pattern

Single Field
(constant fact)

Single Field
(constant item)

Single Field
(constant red)

Single Field
No Expression

Multifield
No Expression

End of Pattern

End of Pattern

Root Node

Level 1

Level 2

Level 3

Level 4

CLIPS Architecture Manual 171

Notice that the patterns (item ?x) and (item ?y) are treated as the same pattern in
the pattern network. The patterns (fact $?) and (fact $?x red $?y) share their first two
fields in the pattern network. The left-most “end of pattern” node is the node associated
with the successful pattern match of the pattern (fact $?). The middle “end of pattern”
node is the node associated with the successful pattern match of the pattern (fact $?x
red $?y). The right-most “end of pattern” node is the node associated with the suc-
cessful pattern match of the patterns (item ?x) and (item ?y).

When a new fact is added to the fact-list, it must traverse the pattern network to
determine which patterns it has matched. A traversal of the pattern network must be
complete. That is, all patterns that have been matched must be found. Traversal
involves testing fields of the fact against pattern expressions found in the pattern
network. As stated previously, the first level of the pattern network performs tests for the
first fields of the patterns, the second level of the pattern network performs tests for the
second fields of the patterns, and so on. In general, this means that the first level of the
pattern network performs tests against the first field of the newly asserted fact, the
second level of the pattern network performs tests against the second field of the newly
asserted fact, and so on. Pattern nodes that can match against multiple fields can
throw this strict correspondence off. Levels below a multifield pattern node do not
correspond directly to a field in the fact; however, they still correspond directly to a field
in the pattern.

Pattern network traversal begins by assigning one pointer the value of the first field
of the newly asserted fact. Hereafter, this pointer will be called the fact field pointer.
Another pointer is assigned the value of the “upper-left,” “top-most,” or “root” node in
the pattern network. Hereafter, this pointer will be called the current pattern pointer.

If the pattern node is intended to match a single field and no expression is associ-
ated with the pattern node, the fact field pointer is “incremented” to point to the next
field of the fact. Matching then proceeds to the first child node of the current pattern
node.

If the single-field pattern node has an expression associated with it, that expression
must be evaluated. If the expression evaluates to true, the fact field pointer is “incre-
mented” and matching proceeds to the first child node of the current pattern node. If
the expression evaluates to false, the matching attempt for this pattern node has failed
and backtracking must take place. For example, if the expression associated with a
pattern node was (constant red), the matching process could only proceed past this
pattern node if the field pointed to by the fact field pointer had the value of red.

If at any point either the current pattern node is a leaf node and the fact field pointer
is pointing at a remaining field in the fact or the current pattern node is not a leaf node
and the fact field pointer is empty (i.e., no more fields are left in the fact), the matching
process has failed. The length of the fact does not match the length of the pattern cur-
rently being matched. Backtracking takes place when this occurs.

If a leaf node is reached and the fact field pointer is empty, a pattern has been
matched. The fact id of the fact being matched is stored in the alpha memory of the
pattern node and the partial match containing the single-fact id is sent to all joins in the
join network connected to this pattern node. Backtracking then takes place to find other
pattern matches.

Multifield variables and wildcards add another level of complexity to the pattern
matching process. The process for matching a multifield pattern node is similar to the
single-field pattern nodes, with the exception that there is usually more than one way
in which a multifield pattern node can match against a fact. To accommodate multifield

172 Match Module

matches (which match multifield pattern nodes to zero or more fields of a fact), the
pattern matching algorithm is entered recursively for each of all possible ways in which
the multifield node can match. For example, if a multifield node is entered and two
fields remain in the fact, the match algorithm is recursively entered three times with the
multifield being bound respectively to zero, one, and two fields of the fact.

Multifield markers are used to keep track of the fields matched by a multifield vari-
able or wildcard. That is, if a multifield variable were the third field of a pattern, a
multifield marker might contain the information “The third field of the pattern matched
the third through sixth fields of the fact.” Multifield markers are chained together as
multifield pattern nodes are encountered.

If a failure ever occurs while pattern matching or a leaf node has been successfully
reached, backtracking must occur in an attempt to find other matches. If the current
pattern node has a right-sibling node, the current pattern node is set to the right-sibling
node. Otherwise, continue setting the current pattern node to the parent of the current
pattern node until a node is reached that has a right sibling. For each level back-
tracked, the fact-field pointer and pattern field pointer need to be decremented. If there
is no pattern node (i.e., the parent of the root node) or a multifield node is reached, a
return should be made from this recursive level of the pattern network traversal.
Multifield markers are unchained when returning from a level of recursion in the
pattern matching process.

The pattern matching process also makes use of some shortcuts to increase speed.
For example, all expression that test for field equality against a single constant value
are placed toward the “right” or “end” of the list of siblings. Whenever a test against
one of these nodes succeeds, it is not necessary to backtrack to the right-sibling nodes
since the tests for these nodes are mutually exclusive. In addition, a multifield node
that has only a single “end of pattern” node as a child does not have to generate all
possible matches. The multifield node must bind to all remaining fields in the fact.

GLOBAL VARIABLES

None.

INTERNAL VARIABLES

CurrentPatternFact

PURPOSE: A pointer to the fact currently being matched.

CurrentPatternMarks

PURPOSE: A list of multifield markers for the fact currently being
matched.

CLIPS Architecture Manual 173

GLOBAL FUNCTIONS

GetFieldSysFunction

PURPOSE: Extracts a specified field value from a fact during the pattern
matching process for the purpose of expression evaluation.
This is the C implementation of the getfield function
discussed in the Generate Module.

ARGUMENTS: A pointer to a DATA_OBJECT structure in which the field
value will be stored.

RETURNS: Value of the variable extracted from the fact

OTHER NOTES: Uses the global variables CurrentPatternFact and
CurrentPatternMarks to extract the value.

PatternMatch

PURPOSE: Filters a fact through the pattern network searching for all
patterns matches by the fact.

ARGUMENTS: A pointer to the fact being matched, a pointer to the current
element in the fact being matched, a pointer to the pattern
node being matched against, an index for the depth
traversed into the pattern network, an index to the current
field being matched in the fact, a pointer to the list of
multifield markers, and a pointer to the last multifield marker
in the list of multifield markers.

OTHER NOTES: Some parameters provide redundant information. See
above for description of compare algorithm.

PatternNetErrorMessage

PURPOSE: Prints an error message when a error occurs as the result of
evaluating an expression in the pattern network. Prints the
fact currently being matched against and the field in the
pattern which caused the problem, then calls the function
TraceErrorToPattern to further isolate the error.

ARGUMENTS: A pointer to the pattern node being matched against when
the error occurred.

TraceErrorToRule

PURPOSE: Prints an error message when a error occurs as the result of
evaluating an expression in the pattern network. Used to
indicate which rule caused the problem.

174 Match Module

ARGUMENTS: A pointer to the join node associated with the pattern being
matched against when the error occurred and an integer
value indicating the number of spaces that should be printed
before the rule name.

LOCAL FUNCTIONS

CopySegmentMarkers

PURPOSE: Copies a list of multifield markers.

ARGUMENTS: A pointer to a list of multifield markers.

RETURNS: A pointer to a copied list of multifield markers.

EvaluatePatternExpression

PURPOSE: Evaluates an expression found in a node the pattern network
which is used to determine if a field in a fact matches the
pattern node. For example, the expression may indicate that
the field of the fact must either be the constant red or the
constant green.

ARGUMENTS: A pointer to the current field in the fact being tested, an
expression to be evaluated, and a pointer to the pattern
node with which the expression is associated.

RETURNS: Boolean value. TRUE if the expression evaluates to TRUE
and FALSE if the expression evaluates to FALSE.

OTHER NOTES: Implemented as a separate function from the general
purpose function EvaluateExpression to allow a fast
evaluation of common pattern network expressions.
Functions evaluated are constant and notconstant (which
determine respectively whether a field is equal or not equal
to a particular constant), eqfield and neqfield (which
determine respectively whether two fields in the same fact
are either equal or not equal), and the functions and and or.
All other functions are evaluated using the function
EvaluateExpression.

TraceErrorToPattern

PURPOSE: Prints an error message when a error occurs as the result of
evaluating an expression in the pattern network. Used to
indicate which patterns caused the problem (e.g. 1st pattern
of a rule, 2nd pattern of a rule, etc). Calls the function
TraceErrorToRule to further isolate the error.

CLIPS Architecture Manual 175

ARGUMENTS: A pointer to the pattern node being matched against when
the error occurred.

176 Match Module

Retract Module

The Retract Module (retract.c) handles the major functionality of updating the join
network when a fact has been retracted from the knowledge base. The algorithm for
retracting a fact from the knowledge base is described as follows.

As pattern matching occurs, information is stored with each fact to indicate which
patterns have matched a given fact. Thus, it is not necessary to perform pattern
matching during retraction of a fact as all matched patterns are already known. Given
the list of patterns matched by a fact to be retracted, the Retract Module will loop
through the list of patterns and perform appropriate retraction operations for that
pattern. Each pattern matched has an associated “end of pattern” node which is
connected to a series of joins. Joins entered from a not pattern CE will use different
algorithms for handling a fact retraction than joins entered from a pattern CE. In
addition, retraction from the join associated with the first CE of a rule is handled
differently. Each algorithm will be discussed in greater detail in the following
paragraphs. Once retraction has been performed for all joins associated with a specific
pattern node, the alpha memory partial match corresponding to the retracted fact can
be removed from the alpha memory of the pattern node.

The first algorithm for retraction occurs when the join being entered has a pattern
CE associated with its RHS. If the join was entered from the RHS, the partial match
containing the retracted fact is known to exist in the alpha memory associated with this
join (and will be removed later). Otherwise, the beta memory of the join is searched to
find and delete all partial matches containing the fact. If the fact is not found in the join,
then retraction for this portion of the join network is complete. Otherwise, this algorithm
is used to recursively retract the fact from all child joins of the current join. Note that a
level of recursion is removed from this algorithm by performing retraction recursively
for all but one of the child joins attached to the current join. This last join is handled
non-recursively within the main loop of the algorithm. Thus, in the event that every join
has a single child join, this algorithm will stay within a relatively tight loop avoiding
recursion.

The second algorithm for retraction occurs when the join is associated with a not
pattern CE that is the first CE of a rule. First, the number of occurrences of the fact in
partial matches found in the alpha memory associated with this join is determined.
These occurrences represent the facts preventing the not pattern CE from being
satisfied. The id slot of the join (which in the top-most join represents the number of
facts preventing the not pattern CE from being satisfied) can then be decremented
by the number of fact occurrences found in the alpha memory. If, after decrementing,
the join id is not zero, then the not pattern CE still has facts preventing it from being
satisfied and the retraction process for this join is completed. Otherwise, the not
pattern CE has been satisfied. If the secondary join expression (for test CEs
following a not pattern CE) associated with the join is also satisfied, a pseudo-fact
partial match for the not pattern CE can be created and sent to all the child joins
connected to this join. The newly created partial match is indirectly sent to the others
joins by using the DriveRetractions function.

The third algorithm for retraction occurs when the join is associated with a not
pattern CE that is not the first CE of a rule. This algorithm is similar to the second
algorithm. The major exception is that the count for the number of facts preventing the
join from being satisfied is stored in the beta memory partial matches. This algorithm
uses a double loop, looping through the alpha memory in the outer loop and the beta

CLIPS Architecture Manual 177

memory in the inner loop. Within the inner loop, if the alpha memory partial match
being tested corresponds to the fact being retracted, the primary join expression is
evaluated for the current alpha and beta memory partial matches. If the expression
evaluates to TRUE (or was non-existent), the alpha memory partial match conflicted
with the beta memory partial match. The count of conflicting facts in the beta memory
partial match can be decremented by one. If the beta memory count reaches zero and
the second join expression associated with the join evaluates to TRUE, a new partial
match consisting of a pseudo-fact partial match and the beta memory partial match
combined is created and sent to all the child joins connected to this join. The newly
created partial match is indirectly sent to the others joins by using the
DriveRetractions function.

GLOBAL VARIABLES

GarbageAlphaMatches

PURPOSE: Maintains a list of data structures which represent the
pseudo-facts that matched not CEs if no real facts matched
the CE. Like facts, these data structures are not thrown away
during rule execution, since the rule may still refer to the data
structure.

GarbagePartialMatches

PURPOSE: Maintains a list of partial matches associated with a not CE
or an alpha memory. Like facts, these data structures are not
thrown away during rule execution, since the rule may still
refer to the data structure.

INTERNAL VARIABLES

DriveRetractionList

PURPOSE: Maintains a list of partial matches that are to be driven
through the join network as the result of a not CE being
satisfied by a retraction.

GLOBAL FUNCTIONS

DeletePartialMatches

PURPOSE: Searches through a list of partial matches and removes any
partial match that contains the specified fact-index.

ARGUMENTS: A fact-index, a list of partial matches, and a pointer to an
integer flag which indicates if any partial matches were
deleted, an integer indicating the position in the partial

178 Retract Module

match to be searched for the fact-index, and an integer flag
indicating whether the list of partial matches is associated
with an alpha or beta memory.

RETURNS: Returns the modified list of partial matches. The integer flag
is set to TRUE if any partial matches were deleted.
Otherwise, it is set to FALSE.

FlushGarbagePartialMatches

PURPOSE: Returns partial matches and associated structures that were
removed as part of a retraction. It is necessary to postpone
returning these structures to memory because RHS actions
retrieve their variable bindings directly from the fact data
structure through the alpha memory bindings.

ARGUMENTS: None. Makes use of the GarbageAlphaMatches and
GarbagePartialMatches variables.

NetworkRetract

PURPOSE: Coordinates the retraction of a fact from the join and pattern
networks.

ARGUMENTS: A list of the patterns that the fact matched and the fact-index
of the fact being retracted.

OTHER NOTES: See algorithm above.

PosEntryRetract

PURPOSE: Handles removing partial matches from a join and all child
joins that contain a specified fact. Used for joins that's RHS
entry is associated with a pattern CE.

ARGUMENTS: Direction from which the join was entered, a pointer to the
join, the fact-index of the fact to be removed from the join,
and the position where the fact-index should be found in the
partial matches.

ReturnPartialMatch

PURPOSE: Returns a partial match and its associated data structures to
the CLIPS memory manager. If the partial match is busy (i.e.
it is currently in use) it is placed on the list of
GarbagePartialMatches.

ARGUMENTS: A pointer to a partial match.

CLIPS Architecture Manual 179

INTERNAL FUNCTIONS

DriveRetractions

PURPOSE: Drives partial matches generated by the retraction of a fact
through the join network.

ARGUMENTS: None. Uses the DriveRetractionList to determine new
partial matches to be driven through the join network.

OTHER NOTES: The retraction of a fact can generate new partial matches
that must be driven through the join network if that fact
matched a not CE. However, such a fact may also match
pattern CEs in the same rule. Therefore, to prevent partial
matches being generated from facts that are to be retracted,
propagation of new partial matches through the join network
is delayed until all partial matches containing a fact to be
retracted have been removed from the join and pattern
networks.

NegEntryRetract

PURPOSE: Handles retractions from the RHS for joins associated with a
not CE that are not associated with the first pattern of a rule.

ARGUMENTS: A pointer to a join and the fact ID of the fact to be retracted.

ReturnMarkers

PURPOSE: Returns the list of data structures associated with an alpha
memory partial match that indicate how multifield variables
matched the pattern associated with the partial match.

ARGUMENTS: A list of data structures.

TopNegJoinRetract

PURPOSE: Handles retractions from the RHS for top-level joins (i.e.
joins associated with the first pattern of a rule) associated
with a not CE.

ARGUMENTS: A pointer to a top-level join and the fact-index of the fact to
be retracted.

180 Retract Module

Rete Utility Module

The Rete Utility Module (reteutil.c) contains a number of functions that are useful to
other modules for implementing the Rete algorithm.

GLOBAL VARIABLES

GlobalLHSBinds

PURPOSE: A pointer to the partial match currently being examined on
the LHS of a join as part of the pattern matching process.
Also used to point to the partial match associated with the
activation for the currently executing rule. This variable is
used by a number of functions (such as the get_var
function) to extract a value from the LHS of a rule for use in a
function call.

GlobalRHSBinds

PURPOSE: A pointer to the partial match currently being examined on
the RHS of a join as part of the pattern matching process.
This variable is used by a number of functions (such as the
get_var function) to extract a value from the LHS of a rule
for use in a function call.

INTERNAL VARIABLES

PseudoFactIndex

PURPOSE: Contains the next fact index to be used when creating a
“pseudo” fact. Pseudo facts are used in the pattern matching
process to indicate that a not conditional element has no
facts matching it. Pseudo facts have a fact index which is
less than zero.

GLOBAL FUNCTIONS

AddSingleMatch

PURPOSE: Adds an additional alpha match to a partial match.

ARGUMENTS: A pointer to a partial match and a pointer to an alpha match
from the pattern network.

RETURNS: A pointer to a new partial match which consists of the single
alpha match appended to the first partial match (the original
partial match is unaffected).

CLIPS Architecture Manual 181

AdjustFieldPosition

PURPOSE: Given the number of fields each multifield variable or
wildcard in a pattern has actually matched, determines the
actual index of a variable within a pattern in the matching
fact. For example, given the pattern (data $?x c $?y ?z) and
the fact (data a b c d e f x), the actual index in the fact for the
5th item in the pattern (the variable ?z) would be 8 since $?x
binds to 2 fields and $?y binds to 3 fields.

ARGUMENTS: A pointer to a list of data structures describing the fields that
each multifield variable or wildcard has matched, an integer
indicating the position of the variable within the pattern, and
a pointer to an integer which stores the extent of the variable
(the number of fields the variable has matched—zero or
greater for multifield variables).

RETURNS: The index of the variable within the fact matched by the
pattern. The extent of the variable (if it is a multifield) is also
stored in one of the calling arguments (which should be
initialized either to 1 if there is no need to distinguish
between the extent of single field and multifield variables or
-1 if there is a need).

ClearPatternMatches

PURPOSE: Removes all links between a pattern and the facts that have
matched that pattern.

ARGUMENTS: A pointer to a pattern node (which should be an end of
pattern pattern node).

CopyPartialMatch

PURPOSE: Copies a partial matches.

ARGUMENTS: A pointer to a partial matches to be copied.

RETURNS: A pointer to a copy of the partial match.

FindFactInPartialMatch

PURPOSE: Searches for a specified fact index in a partial match.

ARGUMENTS: Fact index for which to search and a pointer to a partial
match.

RETURNS: Boolean value. TRUE if the fact index is found; otherwise
FALSE.

182 Rete Utility Module

FlushAlphaBetaMemory

PURPOSE: Returns all partial matches in a list of partial matches either
directly to the pool of free memory or to the list of
GarbagePartialMatches.

ARGUMENTS: A pointer to a list of partial matches.

IncrementPseudoFactIndex

PURPOSE: Decrements the current value of PseudoFactIndex and
returns the previous value.

RETURNS: The current value of the global variable PseudoFactIndex.

MarkRuleNetwork

PURPOSE: Marks each node in the pattern and join networks with a
boolean value (typically indicating whether a action has
been taken for that node). This mark value is used by binary
save and the construct compiler.

ARGUMENTS: The boolean value that the nodes are to be marked with
(TRUE or FALSE).

RETURNS: No return value. The boolean value is stored in the marked
slot of the pattern and join nodes.

MergePartialMatches

PURPOSE: Combines two partial matches into a single partial match.

ARGUMENTS: A pointer to a partial match and another pointer to a partial
match.

RETURNS: A pointer to a new partial match which consists of the second
partial matched appended to the first partial match (the
original partial matches are unaffected).

NewPseudoFactPartialMatch

PURPOSE: Creates a partial match consisting of a pseudo fact index
associated with a not CE.

RETURNS: A partial match consisting of the pseudo fact index. The
value of PseudoFactIndex is also decremented by this
function.

CLIPS Architecture Manual 183

GetNumericArgument

PURPOSE: Directly evaluates a numeric expression under certain
conditions.

ARGUMENTS: A pointer to an expression to evaluate, the name of the
function being executed, a pointer to a DATA_OBJECT
structure in which to store the result of the evaluation, a
boolean flag indicating whether integer results should be
converting to floating point, and an integer value
representing the position of the expression within the
argument list of the function being executed.

RETURNS: Boolean value. TRUE if the result of the expression
evaluation was a number, otherwise FALSE. The value of
the number is also stored in the DATA_OBJECT structure.

OTHER NOTES: Used to provide fast evaluate of arguments to basic
arithmetic functions. If the argument is a number or a
variable, it is evaluated immediately, otherwise,
EvaluateExpression is used.

PrimeJoin

PURPOSE: Updates a join in a rule for an incremental reset. Joins are
updated by “priming” them only if the join is shared with
other rules that have already been incrementally reset. A join
for a new rule will be updated if it is marked for initialization
and either its parent join or its associated entry pattern node
has not been marked for initialization.

ARGUMENTS: A pointer to a join.

PrintPartialMatch

PURPOSE: Prints out a list of fact indices associated with a partial match
or rule instantiation.

ARGUMENTS: A logical name to which output is sent and a pointer to a
partial match.

ResetDeployedRuleImage

PURPOSE: Incrementally resets a runtime image created using the
construct compiler. This function is called by the
InitCImage function associated with the runtime image.

184 Rete Utility Module

ResetNotedJoin

PURPOSE: Determines if a given join is associated with a not CE that is
the first pattern of a rule and also whether it should be
initialized. If the join needs to be initialized a partial match for
the join is created. This function is called as part of an
incremental reset.

ARGUMENTS: A pointer to a join node.

ResetNotedPatterns

PURPOSE: Searches for and generates partial matches for not CEs that
are the first pattern of a rule. This function is called as part of
an incremental reset for runtime images create with the
construct compiler and is called by the function
ResetDeployedRuleImage.

ARGUMENTS: A pointer to a pattern node in the pattern network. This
function uses recursion to traverse the pattern network. This
first call to this function should pass the root node of the
pattern network as its argument.

SetPseudoFactIndex

PURPOSE: Sets the value of the global variable PseudoFactIndex.

ARGUMENTS: New integer starting value for pseudo fact indices (which
must be less than zero).

TagRuleNetwork

PURPOSE: Assigns a unique integer value to each pattern node in the
pattern network and each join node in the join network. This
ID value is used by binary save and the construct compiler.

ARGUMENTS: A pointer to an integer value containing the number of
pattern nodes encountered and the number of join nodes
encountered. The value of these integer variables should be
set to zero before this function is called.

RETURNS: No return value. The pointers passed as arguments have
their values respectively set to the number of pattern nodes
and join nodes found in the rule network.

C IMPLEMENTATION: The integer ID value is stored in the bsaveID slot of the
pattern and join nodes.

CLIPS Architecture Manual 185

INTERNAL FUNCTIONS

None.

186 Rete Utility Module

Logical Dependencies Module

The Logical Dependencies Module (lgcldpnd.c) provides the support routines
necessary for the implementation of the logical conditional element. A fact asserted
by a rule without logical CEs in the rule's LHS is unconditionally supported. A fact
that is unconditionally supported can only be explicitly retracted (i.e. it cannot be
retracted as the direct result of retracting another fact). Facts asserted by deffacts, from
the top-level command prompt, or as the result of actions occurring outside the scope
of a executing rule containing logical CEs are also unconditionally supported. A fact
asserted by a rule with logical CEs in the rule's LHS is logically supported by that
rule. The group of facts contained within the logical CE provide the logical support for
the asserted fact.

Since the logical CEs must appear as the first patterns on the LHS of a rule and
there can be no gaps between logical CEs, there exists a partial match for the rule
containing all of the facts providing logical support in the beta memory of one of the
rule's joins. Logical dependencies are implemented by maintaining two types of links.
First, links are created between a partial match and each fact which receives logical
support from that partial match. Second, reverse links are created between facts and
the partial matches which provide logical support to them.

When a defrule is parsed that contains logical CEs, the location of the join that will
contain the partial matches providing logical support is computed. A pointer to this join
is saved as part of the defrule's data structure. When the rule is then executed, the
pointer to the join is stored in the global variable TheLogicalJoin. Assertions that
occur from the RHS of the executing rule can then create the appropriate links
between the partial match stored in the join referenced by TheLogicalJoin and the
facts to which it provides logical support. When partial matches are removed from the
beta memories of a join (either as the result of a retract or an assert), then the links
between that partial match and the facts it supports are updated. If a fact loses all of its
logical support, then it is automatically retracted.

The following two rules will be used to illustrate the links used to support logical
dependencies.

(defrule Example-1
 (logical (a)
 (b))
 (d)
 =>
 (assert (e) (f)))

(defrule Example-2
 (logical (b)
 (c))
 (d)
 =>
 (assert (f) (g)))

Assuming the rules have already been loaded, the following commands will
execute the rules creating three new facts which are logically supported.

CLIPS> (reset)

CLIPS Architecture Manual 187

CLIPS> (assert (a) (b) (c) (d))
CLIPS> (run)
CLIPS>

The following commands illustrate the logical dependency links between the facts.

CLIPS> (facts)
f-0 (initial-fact)
f-1 (a)
f-2 (b)
f-3 (c)
f-4 (d)
f-5 (e)
f-6 (f)
f-7 (g)
For a total of 8 facts.
CLIPS> (dependencies 5)
f-1,f-2
CLIPS> (dependencies 6)
f-2,f-3
f-1,f-2
CLIPS> (dependencies 7)
f-2,f-3
CLIPS>

The logical support links between the partial matches and the facts dependent
upon the partial match are shown in the following diagram. The facts (e) and (f)
asserted by rule Example-1 are logically dependent upon the partial match containing
facts (a) and (b). Similarly, the facts (f) and (g) asserted by rule Example-2 are logically
dependent upon the partial match containing facts (b) and (c). Note that each partial
match supports two different facts.

188 Logical Dependencies Module

the

f-5 (e)

f-6 (f)

f-7 (g)

(a)

f-2f-1

f-1

f-1

(b)

f-2

(d)

f-4

f-2f-1 f-4

Rule Example-1

(b)

f-3f-2

f-2

f-2

(c)

f-3

(d)

f-4

f-3f-2 f-4

Rule Example-2

The logical support links between the facts and the partial matches from which they
receive logical are shown in the following diagram. Fact (e) is logically supported by
the partial match containing facts (a) and (b) from rule Example-1. Fact (f) is logically
supported by the partial match containing facts (a) and (b) from rule Example-1 and
the partial match containing facts (b) and (c) from rule Example-2. Fact (g) is logically
supported by the partial match containing facts (b) and (c) from rule Example-2. Note
that fact (f) receives logical support from two different partial matches.

CLIPS Architecture Manual 189

f-5 (e)

f-6 (f)

f-7 (g)

(a)

f-2f-1

f-1

f-1

(b)

f-2

(d)

f-4

f-2f-1 f-4

Rule Example-1

(b)

f-3f-2

f-2

f-2

(c)

f-3

(d)

f-4

f-3f-2 f-4

Rule Example-2

GLOBAL VARIABLES

None.

INTERNAL VARIABLES

DependencyList

PURPOSE: A list of pointers to facts that are to be removed because all
of their logical support has been removed.

190 Logical Dependencies Module

GLOBAL FUNCTIONS

AddLogicalDependencies

PURPOSE: Adds the logical dependency links between a fact and the
partial match which logically supports that fact. If a fact is
unconditionally asserted (i.e. the global variable
TheLogicalJoin is NULL), then existing logical support for
the fact is no longer needed and it is removed. If a fact is
already unconditionally supported and the fact is
conditionally asserted (i.e. the global variable
TheLogicalJoin is not NULL), then the logical support is
ignored. Otherwise, the partial match is linked to the fact and
the fact is linked to the partial match.

ARGUMENTS: A pointer to a fact and a boolean flag indicating if the fact
already exists. If a fact already exists, it just receives
additional logical support.

RETURNS: Boolean value. TRUE if the fact should be asserted,
otherwise FALSE. A value of FALSE is returned when the
logical support for a fact is removed before the fact is
asserted (e.g. by retracting a fact contained in a logical CE
of a rule before asserting the fact dependent on the partial
match associated with the logical CE).

AddToDependencyList

PURPOSE: Removes the dependency links between a partial match and
the facts it logically supports. Also removes the associated
links from the facts which point back to the partial match by
calling DetachAssociatedFactDependencies. If a fact
has all of its logical support removed as a result of this
procedure, the dependency link from the partial match is
added to the DependencyList so that the fact will be
retracted as a result of losing its logical support.

ARGUMENTS: A pointer to a partial match.

ForceLogicalRetractions

PURPOSE: Retracts the first fact found on the DependencyList by
calling RetractFact. This retraction will then trigger the
retract of the remaining facts on the DependencyList since
RetractFact will call GetNextLogicalRetraction. This
function is called by AddFact after a new fact has been
processed because the addition of a new fact may cause
partial matches associated with a not conditional element to
be removed. RetractFact does not call this function since it

CLIPS Architecture Manual 191

automatically processes the retraction of facts that lose their
logical support.

GetNextLogicalRetraction

PURPOSE: Returns the next fact on the DependencyList that is to be
retracted because all of its logical support has been
removed.

RETURNS: A pointer to a fact. The DependencyList is also modified
(the first item on the list is removed).

ListDependencies

PURPOSE: Lists the partial matches from a specified fact receives
logical support.

ARGUMENTS: A pointer to a fact.

ListDependents

PURPOSE: Lists all facts which receive logical support from a specified
fact.

ARGUMENTS: A pointer to a fact.

RemoveFactDependencies

PURPOSE: Removes all logical support links from a fact that point to any
partial matches. Also removes the associated links from the
partial matches which point back to the fact by calling
DetachAssociatedPMDependencies.

RemovePMDependencies

PURPOSE: Removes all logical support links from a partial match that
point to any facts. Also removes the associated links from the
facts which point back to the partial match by calling
DetachAssociatedFactDependencies.

ARGUMENTS: A pointer to a fact.

192 Logical Dependencies Module

LOCAL FUNCTIONS

DetachAssociatedFactDependencies

PURPOSE: Removes all logical support links from a fact that point to a
specified partial match. Does not remove links which may
point back to the fact from the partial match.

ARGUMENTS: A pointer to a fact and a pointer to a partial match.

DetachAssociatedPMDependencies

PURPOSE: Removes all logical support links from a partial match that
point to a specified fact. Does not remove links which may
point back to the partial match from the fact.

ARGUMENTS: A pointer to a partial match and a pointer to a fact.

FindLogicalBind

PURPOSE: Finds the partial match associated with the logical CE
which will provide logical support for a fact asserted from the
currently executing rule. The function is called by
AddLogicalDependencies when creating logical support
links between the facts and supporting partial matches. It
compares each partial match found at a specified join to the
partial match associated with a rule activation until it finds
the partial match that generated the rule activation.

ARGUMENTS: A pointer to a join data structure and a partial match. Called
by the function AddLogicalDependencies with the
values TheLogicalJoin and GlobalLHSBinds.

RETURNS: A pointer to a partial match (or NULL if the appropriate
partial match could not be found).

CLIPS Architecture Manual 193

Defrule Manager Module

The Defrule Manager Module (defrule.c) contains a set of functions which initialize and
provide high level support for the defrule construct.

GLOBAL VARIABLES

None.

INTERNAL VARIABLES

DeletedRuleHadBreakpoint

PURPOSE: Boolean flag. If TRUE, the last rule deleted had a breakpoint
set. This flag is used to restore the breakpoint status of a rule
that is redefined.

DeletionsAllowed

PURPOSE: Boolean flag. If TRUE, indicates that rules can be deleted.
Rules cannot be deleted during certain operations such as
assertion and retraction of facts.

LastDefrule

PURPOSE: A pointer to the last defrule in the ListOfDefrules.

ListOfDefrules

PURPOSE: A linked list of all the currently defined defrules.

WatchRules

PURPOSE: Boolean flag. If TRUE, indicates that rule firings should be
displayed.

GLOBAL FUNCTIONS

ClearDefrules

PURPOSE: Defrule construct clear function. Deletes all defrules.

DeleteDefrule

PURPOSE: Deletes a defrule from the ListOfDefrules.

ARGUMENTS: A pointer to the defrule to be deleted.

CLIPS Architecture Manual 195

RETURNS: Boolean value. TRUE if the defrule was found and deleted,
otherwise FALSE.

DeleteNamedDefrule

PURPOSE: Deletes a named defrule from the ListOfDefrules.

ARGUMENTS: The name of the defrule to be deleted.

RETURNS: Boolean value. TRUE if the defrule was found and deleted,
otherwise FALSE.

EvaluateSalience

PURPOSE: Returns the salience value of the specified defrule. If
salience evaluation is currently set to when-defined, then the
current value of the rule's salience is returned. Otherwise the
salience expression associated with the rule is reevaluated,
the value is stored as the rule's current salience, and it is
then returned.

ARGUMENTS: A pointer to a defrule data structure.

RETURNS: The current salience value of the rule. The slot value for the
defrule's current salience value is also changed if needed.

FindDefrule

PURPOSE: Finds a named defrule in the ListOfDefrules.

ARGUMENTS: The name of the defrule to be found.

RETURNS: A pointer to the defrule if found, otherwise NULL.

GetDefruleName

PURPOSE: Returns the name of a defrule.

ARGUMENTS: A pointer to a defrule.

RETURNS: String name of the defrule.

GetDefrulePPForm

PURPOSE: Returns the pretty print representation of a defrule.

ARGUMENTS: A pointer to a defrule.

RETURNS: The string pretty print representation of the defrule.

196 Defrule Manager Module

GetDisjunctIndex

PURPOSE: Returns the disjunct index of a defrule. Disjuncts are created
when or conditional elements are used on the LHS of a rule.
Each disjunct acts as a separate rule and handles one
permutation created by the or CEs on the LHS of the rule.

ARGUMENTS: A pointer to a defrule data structure (the disjunct that's index
is being sought).

RETURNS: An integer value. If the disjunct cannot be found -1 is
returned. Otherwise an integer value ranging from zero to
one less than the number of disjuncts for the rule.

GetIndexedDefrule

PURPOSE: Allows access to the ListOfDefrules by returning a pointer
to nth defrule in the ListOfDefrules.

ARGUMENTS: Integer index of the rule desired in the ListOfDefrules.

RETURNS: A pointer to the specified defrule. If the index is greater than
the number of rules in the ListOfDefrules, a NULL pointer
is returned.

GetNextDefrule

PURPOSE: Allows access to the ListOfDefrules.

ARGUMENTS: A pointer to a deffacts in the ListOfDefrules.

RETURNS: If passed a NULL pointer, returns the first defrule in the
ListOfDefrules. Otherwise, returns the next defrule
following the defrule passed as an argument.

GetRuleDeletions

PURPOSE: Returns the current value of the RuleDeletions flag.

RETURNS: A boolean value.

GetRulesWatch

PURPOSE: Returns the current value of the WatchRules flag.

RETURNS: A boolean value.

CLIPS Architecture Manual 197

InitializeDefrules

PURPOSE: Initializes the defrule construct. Adds the rules watch item,
adds reset, clear, and save functions for defrules, and
calls the functions DefruleCommands and
InitializeEngine to define other defrule related commands
and features.

IsDefruleDeletable

PURPOSE: Indicates whether a defrule can be deleted.

ARGUMENTS: A pointer to a defrule.

RETURNS: Boolean value. TRUE if the defrule can be deleted,
otherwise FALSE.

ListMatches

PURPOSE: Prints all of the partial matches and activations for a
specified defrule.

ARGUMENTS: A pointer to the defrule for which matches are to be listed.

RETURNS: Boolean value. TRUE if the matches were listed, otherwise
FALSE.

RefreshDefrule

PURPOSE: Refreshes a defrule. Activations of the rule that have already
been fired are added to the agenda.

ARGUMENTS: A pointer to the defrule to be refreshed.

RETURNS: Boolean value. TRUE if the defrule was successfully
refreshed, otherwise FALSE.

ReturnDefrule

PURPOSE: Returns a defrule data structure to the CLIPS memory
manager.

ARGUMENTS: A pointer to a defrule data structure.

RETURNS: Boolean value. TRUE if the data structure was successfully
returned to the CLIPS memory manager, otherwise FALSE.

198 Defrule Manager Module

SalienceInformationError

PURPOSE: Prints an informational message indicating which rule's
salience declaration caused an error when a salience value
was being evaluated.

ARGUMENTS: The name of a rule.

SetListOfDefrules

PURPOSE: Sets the ListOfDefrules to the specified value. Normally
used when initializing a run-time module or when bloading a
binary file to install the ListOfDefrules.

ARGUMENTS: A pointer to a linked list of defrules.

SetRuleDeletions

PURPOSE: Sets the current value of the RuleDeletions flag.

ARGUMENTS: A boolean value (the new value of the flag).

RETURNS: A boolean value (the old value of the flag).

LOCAL FUNCTIONS

AddDefrule

PURPOSE: Adds a defrule to the ListOfDefrules and updates the
value of the variable LastDefrule.

ARGUMENTS: A pointer to the defrule data structure.

AddTerminatorJoin

PURPOSE: Creates the final join for a rule which contains the partial
matches for the activations of the rule.

RETURNS: A pointer to a join node data structure.

CheckForPrimableJoins

PURPOSE: Updates the joins of a rule for an incremental reset if portions
of that rule are shared with other rules that have already
been incrementally reset. A join for a new rule will be
updated if it is marked for initialization and either its parent
join or its associated entry pattern node has not been

CLIPS Architecture Manual 199

marked for initialization. The function PrimeJoin is used to
update joins which meet these criteria.

ARGUMENTS: A pointer to a defrule data structure.

IncrementalReset

PURPOSE: Incrementally resets the specified rule. First, any rules
containing not CEs as the first CE are checked to see if that
CE is satisfied. Second, if a rule shares patterns or joins with
other rules, it may be necessary to update the join network
based on existing partial matches. Third, existing facts are
driven through the new portions of the pattern and join
networks.

ARGUMENTS: A pointer to a defrule data structure.

MarkNetworkForIncrementalReset

PURPOSE: Used to set the initialization flags of the pattern and join
nodes for a specified rule before and after an incremental
reset is performed.

ARGUMENTS: A pointer to a defrule data structure and a boolean value to
be assigned to the pattern and join nodes.

OTHER NOTES: The assignment of the initialization value is partially
dependent upon certain joins already having their
initialization flags set to TRUE.

ParseDefrule

PURPOSE: Coordinates all actions necessary for the construction of a
defrule into the current environment. Called to parse a
defrule construct.

ARGUMENTS: Logical name from which defrule input is read.

RETURNS: Boolean value. TRUE if an error occurred while parsing the
defrule, otherwise FALSE.

OTHER NOTES: Makes use of parsing functions from other modules such as
GetConstructNameAndComment, ParseRuleLHS,
and ParseRuleRHS.

RemoveRuleNetwork

PURPOSE: Removes the pattern and join nodes for a specified rule from
the pattern and join networks.

200 Defrule Manager Module

ARGUMENTS: A pointer to a defrule data structure.

OTHER NOTES: Uses the function DetachJoins to remove the rule from the
pattern and join networks.

ReplaceExpressionVariables

PURPOSE: Replaces all symbolic references to variables (local and
global) found in an expression on the RHS of a rule with
expressions containing function calls to retrieve the
variable's value. Makes the final modifications necessary for
handling the modify and duplicate commands.

ARGUMENTS: A pointer to an expression and a pointer to an integer for
storing an error flag.

RETURNS: Nothing. If an error occurs the value of the error flag passed
as a pointer is set to TRUE.

OTHER NOTES: Makes use the functions ReplaceRHSVariable,
ReplaceGlobalVariable, and UpdateModifyDuplicate
to update the expression.

RememberJoinsForRule

PURPOSE: Stores information for each rule of how it is attached to the
pattern and join networks. This information is stored in a
linked list attached to the defrule data structure for the rule.

ARGUMENTS: A pointer to the rule's terminator join, a pointer to the defrule
data structure for the rule, and the depth index of the logical
join for the rule.

ReplaceRHSVariable

PURPOSE: Replaces a symbolic reference to single- or multifield local
variable found in an expression on the RHS of a rule with an
expression containing a function call to retrieve the
variable's value.

ARGUMENTS: A pointer to an expression.

RETURNS: Boolean value. TRUE if the variable reference was
successfully replaced, otherwise FALSE.

ResetDefrules

PURPOSE: Defrule construct reset function. Reinitializes rules that have
a not conditional element as their first conditional element.

CLIPS Architecture Manual 201

SaveDefrules

PURPOSE: Defrule. construct save function. Pretty prints all defrules to
the given logical name.

ARGUMENTS: A logical name to which output is sent.

202 Defrule Manager Module

Defrule Deployment Module

The Defrule Deployment Module (drulebin.c) provides the functionality for
implementing the bload, bsave, and constructs-to-c functions for the defrule
construct.

GLOBAL VARIABLES

None.

INTERNAL VARIABLES

DefruleArray

PURPOSE: A pointer to an array of defrule data structures loaded using
the bload command.

JoinArray

PURPOSE: A pointer to an array of join node data structures loaded
using the bload command.

NumberOfDefrules

PURPOSE: An integer count of the number of defrule data structures in
the DefruleArray.

NumberOfJoins

PURPOSE: An integer count of the number of join node data structures
in the JoinArray.

NumberOfPatternPointers

PURPOSE: An integer count of the number of pattern pointer data
structures in the PatPtrArray.

NumberOfPatterns

PURPOSE: An integer count of the number of pattern node data
structures in the PatternArray.

PatPtrArray

PURPOSE: A pointer to an array of pattern pointer data structures loaded
using the bload command.

CLIPS Architecture Manual 203

PatternArray

PURPOSE: A pointer to an array of pattern node data structures loaded
using the bload command.

GLOBAL FUNCTIONS

DefruleBinarySetup

PURPOSE: Initializes the bload, bsave, and constructs-to-c
functions for the defrule construct.

INTERNAL FUNCTIONS

Defrule Bload/Bsave Functions

PURPOSE: A set of functions used by the bload and bsave commands
to process the defrule construct. These functions are made
available to the bload and bsave commands by calling the
function AddBinaryItem.

Defrule Constructs-To-C Functions

PURPOSE: A set of functions used by the constructs-to-c command to
process the defrule construct. These functions are made
available to the constructs-to-c command by calling the
function AddCodeGeneratorItem.

204 Defrule Deployment Module

Defrule Commands Module

The Defrule Commands Module (rulecom.c) provides a number of commands for
manipulating and examining defrules. The commands provided are run, undefrule,
refresh, halt, rules, ppdefrule, get-incremental-reset, set-incremental-reset,
set-break, remove-break, show-breaks, matches, agenda, get-strategy, set-
strategy, get-salience-evaluation, set-salience-evaluation, and refresh-
agenda,

GLOBAL VARIABLES

None.

INTERNAL VARIABLES

None.

GLOBAL FUNCTIONS

DefruleCommands

PURPOSE: Makes appropriate DefineFunction calls to notify CLIPS of
functions defined in this module.

INTERNAL FUNCTIONS

Defrule Commands

PURPOSE: A series of commands which define the defrule commands
listed above. See the Basic Programming Guide for more
detail on individual functions.

OTHER NOTES: Some functionality for these commands is provided in other
modules.

CLIPS Architecture Manual 205

Deftemplate Commands Module

The Deftemplate Commands Module (deftmcom.c) manages commands associated
with the deftemplate construct. These commands include undeftemplate,
ppdeftemplate, list-deftemplates, modify, duplicate, set-dynamic-
deftemplate-checking, and get-dynamic-deftemplate-checking. Extensions
for the save, clear, bload, bsave, and constructs-to-c commands are defined by
this module. Several support functions for deftemplates are also provided by this
module. For a description of the deftemplate construct, see the CLIPS Reference
Manual. The deftemplate construct capability can be removed by using the appropriate
compile flag in the setup header file.

GLOBAL VARIABLES

None.

INTERNAL VARIABLES

DeftemplateArray

PURPOSE: A pointer to an array of deftemplate data structures loaded
using the bload command.

DeftemplateHashTable

PURPOSE: Stores all deftemplates used by CLIPS.

C IMPLEMENTATION: Implemented as an array. Each position in the array
corresponds to a list of deftemplate entries. Collisions are
resolved by adding the deftemplate entry to the list of entries.

OTHER NOTES: Information about deftemplates is also stored in the
ListOfDeftemplates. This table is primarily used to quickly
locate a deftemplate.

DynamicDeftemplateChecking

PURPOSE: Boolean flag. If TRUE, indicates that dynamic deftemplate
constraint checking is performed for newly asserted
deftemplate facts. If this flag is FALSE, then no checking is
performed when a fact is asserted.

LastDeftemplate

PURPOSE: A pointer to the last deftemplate in the
ListOfDeftemplates.

CLIPS Architecture Manual 207

ListOfDeftemplates

PURPOSE: A linked list of all the currently defined deftemplates.

NumberOfDeftemplates

PURPOSE: An integer count of the number of deftemplate data
structures in the DeftemplateArray.

NumberOfTemplateSlots

PURPOSE: An integer count of the number of slot data structures in the
SlotArray.

SlotArray

PURPOSE: A pointer to an array of slot data structures loaded using the
bload command.

GLOBAL FUNCTIONS

AddDeftemplate

PURPOSE: Adds a deftemplate to the ListOfDeftemplates, then
installs the deftemplate using InstallDeftemplate.

ARGUMENTS: A pointer to a deftemplate data structure.

CheckSlotAllowedValues

PURPOSE: Determines if a primitive data type satisfies the allowed-...
attributes of a slot.

ARGUMENTS: The type of the primitive data type, the value of the primitive
data type, and a pointer to a deftemplate slot data structure.

RETURNS: Boolean value. FALSE if the allowed-... attribute is violated,
otherwise TRUE.

CheckSlotRange

PURPOSE: Determines if a primitive data type satisfies the range
attribute of a slot.

ARGUMENTS: The type of the primitive data type, the value of the primitive
data type, and a pointer to a deftemplate slot data structure.

208 Deftemplate Commands Module

RETURNS: Boolean value. FALSE if the range attribute is violated,
otherwise TRUE.

CheckSlotType

PURPOSE: Determines if a primitive data type satisfies the type attribute
of a slot.

ARGUMENTS: The type of the primitive data type and a pointer to a
deftemplate slot data structure.

RETURNS: Boolean value. FALSE if the type attribute is violated,
otherwise TRUE.

ClearDeftemplates

PURPOSE: Deftemplates construct clear function. Removes all
deftemplates from the ListOfDeftemplates.

DeleteDeftemplate

PURPOSE: Deletes a deftemplate from the ListOfDeftemplates.

ARGUMENTS: A pointer to the deftemplate to be deleted.

RETURNS: Boolean value. TRUE if the deftemplate was found and
deleted, otherwise FALSE.

DeleteNamedDeftemplate

PURPOSE: Deletes a named deftemplate from the
ListOfDeftemplates.

ARGUMENTS: The name of deftemplate to be deleted.

RETURNS: Boolean value. TRUE if the deftemplate was found and
deleted, otherwise FALSE.

DuplicateCommand

PURPOSE: Implements the duplicate command. Calls the function
DuplicateModifyCommand with a value of FALSE to
execute the command.

FindDeftemplate

PURPOSE: Finds a named deftemplate in the ListOfDeftemplates.

ARGUMENTS: The name of deftemplate to be found.

CLIPS Architecture Manual 209

RETURNS: A pointer to the deftemplate if found, otherwise NULL.

FindSlot

PURPOSE: Finds the specified slot in a deftemplate.

ARGUMENTS: The name of the slot to be found and a pointer to a
deftemplate data structure.

RETURNS: A pointer to a slot data structure if the slot is valid for the
specified deftemplate, otherwise NULL.

FindSlotItem

PURPOSE: Given a list of slot assignments, finds the assignment which
matches a specified slot.

ARGUMENTS: A pointer to a slot data structure and a list of slot
assignments.

RETURNS: The slot assignment matching the specified slot data
structure, or NULL if there was no match.

FindSlotPosition

PURPOSE: Returns the integer position of the specified slot for facts
using a specified deftemplate. Single-field slots are ordered
in the same position that they were defined and the multifield
slot is positioned after all other slots.

ARGUMENTS: A pointer to a deftemplate data structure and the name of a
slot.

RETURNS: An integer index ranging from 1 to the number of slots in the
deftemplate. Zero is returned is the slot is not associated with
the specified deftemplate.

GetDeftemplateName

PURPOSE: Returns the name of a deftemplate.

ARGUMENTS: A pointer to a deftemplate.

RETURNS: String name of the deftemplate.

GetDeftemplatePPForm

PURPOSE: Returns the pretty print representation of a deftemplate.

210 Deftemplate Commands Module

ARGUMENTS: A pointer to a deftemplate.

RETURNS: The string pretty print representation of the deftemplate.

GDDCommand

PURPOSE: Implements the get-dynamic-deftemplate-checking
command.

GetDynamicDeftemplateChecking

PURPOSE: Returns the current value of the
DynamicDeftemplateChecking flag.

RETURNS: A boolean value.

GetNextDeftemplate

PURPOSE: Allows access to the ListOfDeftemplates.

ARGUMENTS: A pointer to a deftemplate in the ListOfDeftemplates.

RETURNS: If passed a NULL pointer, returns the first deftemplate in the
ListOfDeftemplates. Otherwise, returns the next
deftemplate following the deftemplate passed as an
argument.

InitializeDeftemplates

PURPOSE: Initializes the deftemplate construct. Adds clear, save,
bload, bsave, and constructs-to-c functions for
defglobals, and calls DeftemplateCommands to define
functions associated with deftemplates.

IsDeftemplateDeletable

PURPOSE: Indicates whether a deftemplate can be deleted.

ARGUMENTS: A pointer to a deftemplate.

RETURNS: Boolean value. TRUE if the deftemplate can be deleted,
otherwise FALSE.

ListDeftemplates

PURPOSE: Displays the ListOfDeftemplates.

CLIPS Architecture Manual 211

ListDeftemplatesCommand

PURPOSE: Implements the list-deftemplates command. Uses the
driver function ListDeftemplates.

ModifyCommand

PURPOSE: Implements the modify command. Calls the function
DuplicateModifyCommand with a value of TRUE to
execute the command.

PPDeftemplate

PURPOSE: Pretty prints a deftemplate.

ARGUMENTS: Name of deftemplate to be pretty printed and logical name of
the output source.

PPDeftemplateCommand

PURPOSE: Implements the ppdeftemplate command. Uses the driver
function PPDeftemplate.

PrintTemplateFact

PURPOSE: Prints a fact using the deftemplate format for displaying facts.

ARGUMENTS: A logical name to send the output and a pointer to a fact.

RETURNS: Boolean value. TRUE if the fact was successfully printed us-
ing the deftemplate format (i.e. a deftemplate was found that
corresponded to the first field of the fact), otherwise FALSE.

QFindDeftemplate

PURPOSE: Finds a named deftemplate in the ListOfDeftemplates.

ARGUMENTS: The name of deftemplate to be found. This argument is
specified as a pointer to a SymbolTable entry rather than a
character string.

RETURNS: A pointer to the deftemplate if found, otherwise NULL.

QSetListOfDeftemplates

PURPOSE: Sets the ListOfDeftemplates to the specified value.

ARGUMENTS: A pointer to a linked list of deftemplates.

212 Deftemplate Commands Module

ReturnSlots

PURPOSE: Returns a linked list of slot data structures to the CLIPS
memory manager.

ARGUMENTS: A linked list of slot data structures.

SDDCommand

PURPOSE: Implements the set-dynamic-deftemplate-checking
command.

SetDynamicDeftemplateChecking

PURPOSE: Sets the current value of the
DynamicDeftemplateChecking flag.

ARGUMENTS: A boolean value (the new value of the flag).

RETURNS: A boolean value (the old value of the flag).

SetListOfDeftemplates

PURPOSE: Sets the ListOfDeftemplates to the specified value.
Normally used when initializing a run-time module or when
bloading a binary file to install the ListOfDeftemplates.
Adds each deftemplate in the new list to the
DeftemplateHashTable by calling the function
AddHashDeftemplate.

ARGUMENTS: A pointer to a linked list of deftemplates.

UndeftemplateCommand

PURPOSE: Implements the undeftemplate command.

INTERNAL FUNCTIONS

AddHashDeftemplate

PURPOSE: Adds a deftemplate to the DeftempateHashTable.

ARGUMENTS: A pointer to a deftemplate.

DeftemplateCommands

PURPOSE: Defines the commands undeftemplate, ppdeftemplate,
list-deftemplates, duplicate, modify,

CLIPS Architecture Manual 213

get-dynamic-deftemplate-checking, and
set-dynamic-deftemplate-checking.

Deftemplate Bload/Bsave Functions

PURPOSE: A set of functions used by the bload and bsave commands
to process the deftemplate construct. These functions are
made available to the bload and bsave commands by
calling the function AddBinaryItem.

Deftemplate Constructs-To-C Functions

PURPOSE: A set of functions used by the constructs-to-c command to
process the deftemplate construct. These functions are made
available to the constructs-to-c command by calling the
function AddCodeGeneratorItem.

DeinstallDeftemplate

PURPOSE: Decrements all occurrences in the SymbolTable of
symbols found in an deftemplate, calls
DeinstallExpression for all expressions used by the
deftemplate, and removes the deftemplate from the
DeftempateHashTable.

ARGUMENTS: A pointer to a deftemplate.

DuplicateModifyCommand

PURPOSE: Implements the duplicate and modify commands. The fact
being duplicated or modified is first copied to a new fact.
Replacements to the fields of the new fact are then made. If a
modify command is being performed, the original fact is
retracted. Lastly, the new fact is asserted.

ARGUMENTS: Boolean value. If TRUE, the original fact used to duplicate
the newly asserted fact is retracted (for the modify
command). If FALSE, the original fact is not retracted (for the
duplicate command). Other arguments to the command are
retrieved using the argument access functions.

InitializeDeftemplateHashTable

PURPOSE: Initializes the DeftemplateHashTable.

InstallDeftemplate

PURPOSE: Increments all occurrences in the SymbolTable of symbols
found in an deftemplate, calls InstallExpression for all

214 Deftemplate Commands Module

expressions used by the deftemplate, and adds the
deftemplate to the DeftempateHashTable.

ARGUMENTS: A pointer to a deftemplate.

RemoveHashDeftemplate

PURPOSE: Removes a deftemplate from the DeftempateHashTable.

ARGUMENTS: A pointer to a deftemplate.

RETURNS: Boolean value. TRUE if the deftemplate was removed,
otherwise FALSE.

SaveDeftemplates

PURPOSE: Deftemplate construct save function. Pretty prints all
deftemplates to the given logical name.

ARGUMENTS: A logical name to send output.

TemplateMultifieldSlotReplace

PURPOSE: Replaces the multifield value slot of a deftemplate fact.
Called by DuplicateModifyCommand when replacing
slot values.

ARGUMENTS: A pointer to the list of expressions to be evaluated and
stored in the multifield slot, and pointer to the fact in which
the new multifield value is to be stored, and a pointer to the
deftemplate corresponding to the fact.

RETURNS: A pointer to a fact. If the previous size of the fact did not
exactly match the exact amount of space needed for the new
multifield value, then a new fact of the exact size is
dynamically allocated and the old fact is discarded.

CLIPS Architecture Manual 215

Deftemplate Functions Module

The Deftemplate Functions Module (deftmfun.c) provides parsing routines for the
modify and duplicate commands and the template patterns used in the assert
command. Template patterns found within these commands are referred to as RHS
patterns (since these commands are typically used from the RHS of a rule). For a
description of the modify and duplicate commands and using template patterns
within the assert command, see the CLIPS Basic Programming Guide. The
Deftemplate Function Module also provides the functionality for dynamic deftemplate
checking. The deftemplate construct capability can be removed by using the
appropriate compiler flag in the setup header file.

Template patterns are converted by CLIPS into regular positional patterns through
a set of simple translation rules. By using field keywords, the fields of a template pat-
tern can be specified in any order. The keywords fields, however, will be translated
into a fixed positional order. The single-field values of a RHS template pattern retain
the same order that they are given in their corresponding deftemplate. A multifield
value in a RHS template pattern is always placed at the end of a pattern regardless of
the position of the field definition in the deftemplate. For example, given the following
deftemplate,

(deftemplate example
 (multifield z)
 (field x (default 3))
 (field y))

The RHS pattern used in the following assert

(assert (example (z c d e) (y b) (x a)))

would be translated to

(assert (example a b c d e))

If a value is not specified in a template pattern, an appropriate value for the pattern
will be used. A RHS template pattern used with an assert will use the default value for
any unspecified fields. If a default value was not specified for a field, CLIPS provides a
default value based on the allowed types for the field and the cardinality of the field
(single-field or multifield). Unspecified fields in a RHS template pattern for the modify
or duplicate command will be replaced with the current value of the field for the fact
being modified. For example, the RHS pattern used in the following assert

(assert (example (y 4)))

would be translated to

(assert (example 3 4))

GLOBAL VARIABLES

None.

CLIPS Architecture Manual 217

INTERNAL VARIABLES

None.

GLOBAL FUNCTIONS

CheckTemplateFact

PURPOSE: Performs dynamic deftemplate checking on individual fields
of a deftemplate facts.

ARGUMENTS: The type of the field being checked, the value of the field
being checked, a pointer to the slot data structure to which
the field is being assigned, and a pointer to the fact in which
the field is contained.

RETURNS: Boolean value. TRUE if a constraint error is detected,
otherwise FALSE. Also sets the value of EvaluationError if
a constraint error is detected.

OTHER NOTES: Calls the functions CheckSlotType, CheckSlotRange,
and CheckSlotAllowedValues to perform the constraint
checking.

DuplicateParse

PURPOSE: Coordinates all actions necessary to parse the duplicate
command.

ARGUMENTS: Logical name from which input is read and a pointer to the
expression function call.

RETURNS: Expression representing the duplicate command.

OTHER NOTES: The expression returned by this function may later be
modified by the function UpdateModifyDuplicate. This
function uses the ModAndDupParse function to actually
parse the command.

GetMultiSlotPosition

PURPOSE: Given the relation name of a fact (the first field), determines if
the fact is a deftemplate fact and if so which position in the
fact corresponds to the beginning of the multifield slot.

ARGUMENTS: The relation name of a fact (a pointer to a symbol).

RETURNS: An integer value. -1 if the relation name is not associated
with a deftemplate, 0 if the relation name is associated with a
deftemplate that does not contain a multifield slot, and the

218 Deftemplate Functions Module

position of the multifield slot (a value greater than 0) for
deftemplates containing a multifield slot.

ModifyParse

PURPOSE: Coordinates all actions necessary to parse the modify
command.

ARGUMENTS: Logical name from which input is read and a pointer to the
expression function call.

RETURNS: Expression representing the modify command.

OTHER NOTES: The expression returned by this function may later be
modified by the function UpdateModifyDuplicate. This
function uses the ModAndDupParse function to actually
parse the command.

MultiIntoSingleFieldSlotError

PURPOSE: Determines if a multifield value is being placed into a single
field slot of a deftemplate fact.

ARGUMENTS: The positional index of the slot being changed and the
relation name of the fact (a pointer to a symbol).

RETURNS: Nothing, however, the EvaluationError is set to TRUE and
an error message is printed if a multifield value is placed in a
single field slot.

ParseAssertTemplate

PURPOSE: Coordinates all actions necessary to parse template patterns
found in assert commands and deffacts constructs.

ARGUMENTS: Logical name from which input is read, a pointer to a token
structure in which scanned tokens are placed, a pointer to
integer flag in which a boolean value is to be stored
indicating whether a multifield value was used in the assert,
a pointer to integer flag in which a boolean value is to be
stored indicating whether an error occurred while parsing, a
pointer to the symbol containing the deftemplate name that
was parsed from the first field of the fact, an integer value
indicating the type of token that terminates the template (e.g.
right parenthesis), and a boolean flag indicating if only
constants are allowed within the template (to be used with
functions such as load-facts).

CLIPS Architecture Manual 219

RETURNS: An expression representing the list of values to be asserted.
The error flag and multifield value flag passed as parameters
may also be set.

UpdateModifyDuplicate

PURPOSE: Changes the modify and duplicate commands such that
the integer positions of the slots are stored in the command
rather than the slot name. This allows quicker replacement of
slots. This replacement can only take place when the
deftemplate is specified using a fact-address bound on the
LHS of a rule.

ARGUMENTS: A pointer to a modify or duplicate command and the name
of the command being updated.

RETURNS: Boolean value. TRUE if the command was successfully
modified (or could not be modified because a fact-address
was not used) and FALSE if an error occurred while
modifying the command. The expression passed as an
argument is also directly modified.

INTERNAL FUNCTIONS

AssertSlotsMultiplyDefined

PURPOSE: Determines if the same slot was specified more than once in
a deftemplate assert pattern.

ARGUMENTS: A pointer to a list of slot assignments.

RETURNS: Boolean value. TRUE if a slot was specified more than once,
otherwise FALSE.

CheckRHSSlotTypes

PURPOSE: Checks the validity of a change to a slot as the result of an
assert, modify, or duplicate command. This checking is
performed statically (i.e. when the command is being
parsed).

ARGUMENTS: A pointer to the list of values to be stored in a slot, a pointer
to a slot data structure, and the name of the command
modifying the slot.

RETURNS: Boolean value. FALSE if the values do not satisfy slot
restrictions and TRUE if they do satisfy slot restrictions.

220 Deftemplate Functions Module

FieldCheckTemplate

PURPOSE: Checks a slot from a template fact to make sure that it
doesn’t violate any of the deftemplate’s constraints.

ARGUMENTS: The type of the slot’s value, a pointer to the slot’s value, a
pointer to the slot data structure, and a pointer to the fact
from which the slot’s value was extracted.

RETURNS: Boolean value. TRUE if one of the deftemplate’s constraints
is violated.

GetSlotAssertValues

PURPOSE: Returns the assigned slot value for a specified slot. If no slot
value has been assigned, then a default value is returned.

ARGUMENTS: A pointer to a slot data structure and a pointer to a list of slot
assignments.

RETURNS: A pointer to an expression.

ModAndDupParse

PURPOSE: Handles parsing of the modify and duplicate commands.

ARGUMENTS: Logical name from which input is read, a pointer to the
expression function call, and the name of the command
being parsed.

RETURNS: A pointer to an expression.

OTHER NOTES: Calls the function GetAssertArgument to retrieve
individual values to be changed in the slots.

ModifySlotsMultiplyDefined

PURPOSE: Determines if the same slot was specified more than once in
a modify or duplicate command.

ARGUMENTS: A pointer to a list of slot assignments.

RETURNS: Boolean value. TRUE if a slot was specified more than once,
otherwise FALSE.

ParseAssertSlotValues

PURPOSE: Parses the values to be asserted for a specified slot.

CLIPS Architecture Manual 221

ARGUMENTS: Logical name from which input is read, a pointer to a token
structure in which scanned tokens are placed, a pointer to a
slot data structure, a pointer to integer flag in which a
boolean value is to be stored indicating whether a multifield
value was used in the assert, a pointer to integer flag in
which a boolean value is to be stored indicating whether an
error occurred while parsing, and a boolean flag indicating if
only constants are allowed as slot values.

RETURNS: A pointer to the list of assert values for the slot. The error flag
and multifield value flag passed as parameters may also set.

OTHER NOTES: Used by the ParseAssertTemplate function. Calls the
function GetAssertArgument to retrieve individual values
to be stored in the slot.

ParseSlotLabel

PURPOSE: Parses the beginning of a slot definition. Checks for an
opening left parenthesis and a valid slot name.

ARGUMENTS: Logical name from which input is read, a pointer to a token
structure in which scanned tokens are placed, a pointer to a
deftemplate data structure (for determining slot validity), a
pointer to integer flag in which a boolean value is to be
stored indicating whether an error occurred while parsing,
and an integer value indicating the type of token that
terminates the template (e.g. right parenthesis).

RETURNS: A pointer to the slot data structure referenced by the slot
label. The error flag passed as a parameter may also be set.

OTHER NOTES: Used by the ParseAssertTemplate function.

ReorderAssertSlotValues

PURPOSE: Reorders a list of slot assignments for an assert command
from a template ordering to a positional ordering.
Unspecified slots are assigned default values.

ARGUMENTS: A pointer to a deftemplate data structure and a pointer to a
list of slot assignments.

RETURNS: Returns a list of expressions which can directly be attached
as the argument list to an assert command.

222 Deftemplate Functions Module

ReturnSAPs

PURPOSE: Returns intermediate data structures used for parsing an
deftemplate assert pattern to the CLIPS memory manager.

ARGUMENTS: A pointer to a list of slot assignments.

CLIPS Architecture Manual 223

Deftemplate Parser Module

The Deftemplate Parser Module (deftmpsr.c) contains the function necessary for
parsing a deftemplate construct. The BNF for the deftemplate construct is shown in
Appendix G of the CLIPS Basic Programming Guide.

GLOBAL VARIABLES

None.

INTERNAL VARIABLES

DeftemplateError

PURPOSE: Indicates whether an error was encountered during parsing
of a deftemplate construct.

GLOBAL FUNCTIONS

ParseDeftemplate

PURPOSE: Coordinates all actions necessary for the construction of a
deftemplate into the current environment. Called to parse a
deftemplate construct.

ARGUMENTS: Logical name from which deftemplate input is read.

OTHER NOTES: Uses the functions GetConstructNameAndComment
and SlotDeclarations to perform the parsing.

INTERNAL FUNCTIONS

CheckSlotConflicts

PURPOSE: Checks to determine if any of a slot's attributes conflict with
each other (e.g. declaring a slot to be of type integer but
declaring the default value to be a symbol).

ARGUMENTS: A pointer to the slot declaration structure.

RETURNS: Boolean value. FALSE indicates a conflict exists while TRUE
indicates no conflict exists.

DefinedSlots

PURPOSE: Builds a new slot declaration and coordinates the parsing of
the slot 's attributes.

CLIPS Architecture Manual 225

ARGUMENTS: Logical name from which input is read, the name of the slot,
a boolean flag indicating if the slot is a multifield, and a
pointer to a token structure in which scanned tokens are
placed.

RETURNS: A pointer to the data structure which represents the slot
declaration.

OTHER NOTES: Uses the ParseRangeAttribute, ParseTypeAttribute,
ParseDefault, and ParseAllowedValuesAttribute
functions to parse individual slot attributes.

MultiplyDefinedSlots

PURPOSE: Determines if two slots in a deftemplate construct have been
given identical names.

ARGUMENTS: A pointer to a list of slot declaration structures.

RETURNS: Boolean value. TRUE indicates that slots have been multiply
defined, while FALSE indicates that slots have not been
multiply defined.

ParseAllowedValuesAttribute

PURPOSE: Parses the allowed-values, allowed-integers, allowed-floats,
allowed-numbers, allowed-symbols, and allowed-strings
slot attributes.

ARGUMENTS: Logical name from which input is read, a pointer to the slot
declaration structure, and the name of the slot attribute being
parsed.

RETURNS: Boolean value. FALSE indicates an error occurred while
parsing the type attribute, TRUE indicates no error occurred.
The range fields of the slot declaration structure are also
modified based upon the range declaration.

ParseDefault

PURPOSE: Parses the default slot attribute.

ARGUMENTS: Logical name from which input is read, a boolean flag
indicating if the slot is a multifield, and a pointer to a token
structure in which scanned tokens are placed.

RETURNS: A pointer to an expression containing the default slot
value(s).

226 Deftemplate Parser Module

ParseRangeAttribute

PURPOSE: Parses the range slot attribute.

ARGUMENTS: Logical name from which input is read and a pointer to the
slot declaration structure.

RETURNS: Boolean value. FALSE indicates an error occurred while
parsing the type attribute, TRUE indicates no error occurred.
The range fields of the slot declaration structure are also
modified based upon the range declaration.

ParseSlot

PURPOSE: Coordinates the parsing of an individual slot declaration.

ARGUMENTS: Logical name from which input is read and a pointer to a
token structure in which scanned tokens are placed.

RETURNS: A pointer to the data structure which represents the slot
declaration.

OTHER NOTES: Uses the function DefinedSlots to coordinate parsing of
individual slot attributes.

ParseTypeAttribute

PURPOSE: Parses the type slot attribute.

ARGUMENTS: Logical name from which input is read and a pointer to the
slot declaration structure.

RETURNS: Boolean value. FALSE indicates an error occurred while
parsing the type attribute, TRUE indicates no error occurred.
The allowed type fields of the slot declaration structure are
also modified based upon the type declaration.

SlotDeclarations

PURPOSE: Coordinates the parsing of all of the slot declarations (i.e.
field and multifield specifications) for a deftemplate construct.

ARGUMENTS: Logical name from which input is read and a pointer to a
token structure in which scanned tokens are placed.

RETURNS: A linked list of data structures which represent the slot
declarations.

CLIPS Architecture Manual 227

OTHER NOTES: Uses the function ParseSlot to parse individual slot
declarations.

228 Deftemplate Parser Module

Deftemplate LHS Module

The Deftemplate LHS Module (deftmlhs.c) provides routines for parsing deftemplate
pattern found in the LHS of a rule. For a description of using template patterns on the
LHS of a rule, see the CLIPS Basic Programming Guide.

Template patterns are converted by CLIPS into regular positional patterns through
a set of simple translation rules. By using field keywords, the fields of a template pat-
tern can be specified in any order. The keywords fields, however, will be translated
into a fixed positional order. The single-field values of a LHS template pattern retain
the same order that they are given in their corresponding deftemplate. A multifield
value in a LHS template pattern is always placed at the end of a pattern regardless of
the position of the field definition in the deftemplate. For example, given the following
deftemplate,

(deftemplate example
 (multifield z)
 (field x (default 3))
 (field y))

the LHS pattern shown following

(example (z $?z) (y ?y) (x ?x))

would be translated to

(example ?x ?y $?z)

If a value is not specified in a template pattern, an appropriate value for the pattern
will be used. If a LHS template pattern has an unspecified value, that value will be
replaced with ? for single-field slots and $? for multifield slots. For example, the LHS
template pattern shown following

(example (y 3))

would be translated to

(example ? 3 $)

GLOBAL VARIABLES

None.

INTERNAL VARIABLES

None.

CLIPS Architecture Manual 229

GLOBAL FUNCTIONS

DeftemplateLHSParse

PURPOSE: Parses a deftemplate pattern found on the LHS of a rule.

ARGUMENTS: Logical name from which input is read and the name of the
deftemplate corresponding to the first field of the pattern
being parsed.

RETURNS: A pointer to a linked structure containing the intermediate
LHS representation of the pattern. If an error has occurred
during parsing, a NULL pointer is returned.

OTHER NOTES: The intermediate LHS representation is built using the
functions GetLHSSlots, MultiplyDefinedLHSSlots, and
ReorderLHSSlotValues.

INTERNAL FUNCTIONS

CheckLHSSlotTypes

PURPOSE: Determines if a slot constraint satisfies slot restrictions (e.g.
type, range, and value).

ARGUMENTS: A pointer to the slot constraints for a slot and a pointer to a
corresponding slot data structure.

RETURNS: Boolean value. TRUE, if the slot restrictions are satisfied (i.e.
have not been violated), otherwise FALSE.

GetLHSSlots

PURPOSE: Parses the list of slot constraints associated with a LHS
deftemplate pattern.

ARGUMENTS: Logical name from which input is read, a pointer to a token
structure in which scanned tokens are placed, a pointer to
the deftemplate data structure for the pattern being parsed,
and a pointer to an integer flag in which an error status is
stored.

RETURNS: Returns a linked list of the slot constraints for the pattern
(which could be a NULL pointer if there are no slot
constraints). If an error occurs, the integer flag passed as an
argument is set to TRUE.

OTHER NOTES: Builds the list of slot constraints using the functions
GetSingleLHSSlot and CheckLHSSlotTypes.

230 Deftemplate LHS Module

GetSingleLHSSlots

PURPOSE: Parses a single slot constraint associated with a LHS
deftemplate pattern.

ARGUMENTS: Logical name from which input is read, a pointer to a token
structure in which scanned tokens are placed, a pointer to
the slot data structure for the slot being parsed, and a pointer
to an integer flag in which an error status is stored.

RETURNS: Returns the slot constraints for the slot. If an error occurs, the
integer flag passed as an argument is set to TRUE and a
NULL pointer is returned.

OTHER NOTES: Primarily uses the function RestrictionParse to parse the
slot constraints

MultiplyDefinedLHSSlots

PURPOSE: Determines if two slot constraints in a deftemplate LHS
pattern have been given for the same slot name.

ARGUMENTS: A pointer to a list of slot constraints.

RETURNS: Boolean value. TRUE indicates that slots have been multiply
defined, while FALSE indicates that slots have not been
multiply defined.

ReorderLHSSlotValues

PURPOSE: Reorders a list of slot constraints for a LHS deftemplate
pattern from a template ordering to a positional ordering.
Unspecified slots match against wildcards (for single field
slots) and multifield wildcards (for multifield slots).

ARGUMENTS: A pointer to the list of slots for a deftemplate, a pointer to the
list of specified slot constraints for the pattern, and a pointer
to the current intermediate LHS representation of the
deftemplate pattern (which contains only the deftemplate
name).

RETURNS: A pointer to the LHS representation of the deftemplate
pattern containing the slot constraints in the appropriate
order with unspecified slots replaced with wildcards.

ReturnSLPs

PURPOSE: Returns intermediate data structures used for parsing an
deftemplate LHS pattern to the CLIPS memory manager.

CLIPS Architecture Manual 231

ARGUMENTS: A pointer to a list of slot constraints.

232 Deftemplate LHS Module

Binary Save Module

The Binary Save Module (bsave.c) provides the functionality for the bsave command.
To illustrate how a binary save is performed, the following code will be used as
example:

(deffacts start-info
 (point 3.7 5.3))

(deffunction compute ()
 (+ (* 2 3) (* 9.1 2.3)))

For future reference, the expressions associated with the deffacts start-info and the
deffunction compute are show below. Note that there are some differences between
the representation shown below and the actual representation in CLIPS. For example,
the body of a deffunction is enclosed within a progn function, but this is not shown in
diagram below.

Symbol
point

Function
assert

Float
5.3

Float
5.3
Float
3.7

Deffacts start-info Expression

Float
9.1

Function
*

Integer
2

Function
*

Function
+

Integer
3

Float
2.3

Deffunction compute Expression

In the proceeding descriptions, it will be assumed that integers and pointers occupy
four bytes of memory storage and that double precision floating pointer numbers
occupy four bytes of memory storage. Characters always occupy one byte of memory
storage regardless of the C implementation.

The first step in creating a binary image file is to write a binary header to the file so
that the bsave command can verify that the file is CLIPS binary file and determine

CLIPS Architecture Manual 233

which version of CLIPS created the file. The binary header is written in two distinct
parts. The first part indicates that the file is a CLIPS binary file and contains control
characters to help prevent a text file as being mistaken for a binary file. The second
part contains the version number of CLIPS that was used to create the binary file. An
example binary header is shown following:

"\1\2\3\4CLIPS" "V5.00"

In the second step, all functions, symbols, integers, and floats within CLIPS have a
status flag set to FALSE to indicate that each of these items is not needed by the
binary image. Then, each construct that has been registered using the
AddBinaryItem function has its specified function called which is used to mark which
functions, symbols, integers, floats are need to save the binary image for that construct.
Finally, after all constructs have had the opportunity to mark needed items, each
needed symbol, integer, and float is assigned a unique integer id that will be used as a
reference in the binary image. In the example shown previously, the functions assert,
+, and * are needed, the symbols start-info, compute, and point are needed, the floats
3.7, 5.3, 9.1, and 2.3 are needed, and the integers 2 and 3 are needed.

In step three, each of the needed functions is written out to the binary image. The
number of functions needed is written, followed by the amount of space for all of the
function names, followed by each of the function names as a NULL terminated string.
Functions are given indexes at this point. Note that these are not written in any specific
order with relation to which binary item needs them. A function is only written once
(regardless of the number of binary items which use it—it’s either needed or its not).
For the example shown previously, the following output would be written to the binary
file.

4 bytes: Total Size of Function Names

"+" 2 bytes: Space for Function #0

"*" 2 bytes: Space for Function #1

"assert" 7 bytes: Space for Function #2

11

3 4 bytes: Number of Functions

In step four, each of the needed symbols is written out to the binary image. The
number of symbols needed is written, followed by the amount of space for all of the
symbol names, followed by each of the symbol names as a NULL terminated string.
For the example shown previously, the following output would be written to the binary
file.

234 Binary Save Module

 4 bytes: Total Size of Symbols

"start-info" 12 bytes: Space for Symbol #0

"compute" 8 bytes: Space for Symbol #1

"point" 6 bytes: Space for Symbol #2

26

3 4 bytes: Number of Symbols

In step five, each of the needed floats is written out to the binary image. The
number of floats needed is written followed by each of the floats needed. For the
example shown previously, the following output would be written to the binary file.

8 bytes: Space for Float #0

2.3 8 bytes: Space for Float #1

3.7 8 bytes: Space for Float #3

5.3 8 bytes: Space for Float #4

9.1

4 4 bytes: Number of Floats

In step six, each of the needed integers is written out to the binary image. The
number of integers needed is written followed by each of the integers needed. For the
example shown previously, the following output would be written to the binary file.

4 bytes: Space for Integer #0

3 4 bytes: Space for Integer #1

2

4 4 bytes: Number of Integers

In step seven, each of the expressions needed by the constructs is written out to the
binary image. First, the total number of expression structures is written out to the binary
image and then each registered construct is called to dump its expressions to the file.
Each expression is written to the binary image using the following format.

TYPE INDEX
VALUE

ARGUMENT
LIST

NEXT
ARGUMENT

The type field corresponds directly to its value in the CLIPS expression data
structure. The index value, argument list, and next argument fields are pointers in the
CLIPS expression data structure, but are converted to integers indexes when saved to
the binary image. For example, the index value for the symbol point would be 2 since it
is the third item saved in the the symbol section of the binary image (note that the nth
item in a C array is referenced by n-1). Pointers other expressions or data structures
are converted to integer indexes as well. A NULL pointer is converted to the value -1.
For the example shown previously, the following output would be written to the binary
file for saving the expressions.

CLIPS Architecture Manual 235

FUNCTION 2 16 bytes: Function assert #0 1 -1

SYMBOL 2 16 bytes: Symbol point #1-1 2

FLOAT 2 16 bytes: Float 3.7 #2-1 3

FLOAT 3 16 bytes: Float 5.3 #3-1 -1

FUNCTION 0 16 bytes: Function + #4 5 -1

FUNCTION 1 16 bytes: Function * #5 6 8

INTEGER 0 16 bytes: Integer 2 #6-1 7

INTEGER 1 16 bytes: Integer 3 #7-1 -1

FUNCTION 1 16 bytes: Function * #8 9 -1

FLOAT 0 16 bytes: Float 9.1 #9-1 10

FLOAT 1 16 bytes: Float 2.3 #10-1 -1

10 4 bytes: Number of Expressions

In step eight, each registered construct is written to the binary image. First, the
name of the construct is written to the binary image (up to a specified number of
characters). The bsave function for the construct is then called. The bsave function for
the construct is first responsible for writing the amount space required by it (in case the
construct must be skipped over when bloaded). It then can write out any data
structures that it needs.

If the deffacts construct was defined using the following C data structure,

struct deffacts
 {
 struct symbol *name;
 char *ppForm;
 struct expression *assertItems;
 struct deffacts *next;
 };

then the following format could be used in writing the deffacts constructs to the binary
image.

PRETTY
PRINT

NEXT
DEFFACTS

NAME DEFFACTS
EXPRESSION

The name field would be the integer index of a symbol, the ppForm field could be
given an index of -1 (since pretty print forms are not loaded with binary images), the
assertItems field would be given the appropriate index for the expression saved
previously, and the next field would contain the integer index to the next deffacts in the
binary image (-1 for the last deffacts). For the example shown previously, the following
output would be written to the binary file for saving the deffacts.

236 Binary Save Module

20 4 bytes: Total Size of Deffacts

"deffacts" 20 bytes: Deffacts Header

1 4 bytes: Number of Deffacts

0 -1 16 bytes: Deffacts #00 -1

Similarly, if the deffunction construct was defined using the following C data
structure,

struct deffunction
 {
 struct symbol *name;
 char *ppForm;
 struct expression *code;
 int numberOfParameters;
 struct deffunction *next;
 };

then the following format could be used in writing the deffunction constructs to the
binary image.

NEXT
DEFFUNCTION

PRETTY
PRINT

NUMBER OF
ARGUMENTS

NAME DEFFUNCTION
BODY

The name field would be the integer index of a symbol, the ppForm field could be
given an index of -1 (since pretty print forms are not loaded with binary images), the
code field would be given the appropriate index for the expression saved previously,
the numberOfParameters field would be given its actual integer value, and the next
field would contain the integer index to the next deffunction in the binary image (-1 for
the last deffunction). For the example shown previously, the following output would be
written to the binary file for saving the deffunctions.

24 4 bytes: Total Size of Deffunctions

"deffunction" 20 bytes: Deffunction Header

1 4 bytes: Number of Deffunctions

4 -1 20 bytes: Deffacts #01 -1 0

The final step in saving a binary image is to write a binary footer to identify the end
of the binary image. This binary footer is identical to the first part of the binary header.
An example binary footer is shown following:

"\1\2\3\4CLIPS"

CLIPS Architecture Manual 237

GLOBAL VARIABLES

ExpressionCount

PURPOSE: An integer value representing the number of expression
data structures which have been encountered or processed.

ListOfBinaryItems

PURPOSE: Contains a list of data structures used to call functions for
various constructs which generate output or read input for
the bsave/bload commands.

INTERNAL VARIABLES

None.

GLOBAL FUNCTIONS

AddBinaryItem

PURPOSE: Adds an item to the ListOfBinaryItems. Every construct
that generates output for bsave must use this function to
install functions that will be called whenever a bsave
command is executed.

ARGUMENTS: A name to be associated with the binary item, the priority of
the item, a pointer to a function which is called to mark items
needed by the binary item (symbols, floats, integers, and
functions), a pointer to function which will write all
expressions needed by a binary item to the binary output file,
a pointer to a function which writes other data required by a
binary item to the binary output file, a pointer to a function
which is call to load input from a binary file when a bload is
performed, a pointer to a function which initializes the data
for a binary item after a bload has been performed (e.g.
converting indices to actual addresses), and a pointer to a
function which is called when a clear command is executed
while a binary image is loaded.

RETURNS: Boolean value. TRUE if the binary item was successfully
added, otherwise FALSE.

 Bsave

PURPOSE: Main driver routine for coordinating binary output to a file for
the bsave function.

238 Binary Save Module

ARGUMENTS: The name of the file in which to store the binary
representation of the constructs currently loaded in the
CLIPS environment.

RETURNS: Boolean value. TRUE, if the binary file was successfully
created, otherwise FALSE.

BsaveCommand

PURPOSE: Converts CLIPS constructs currently loaded into the CLIPS
environment into a binary representation stores them in a
file. This function is the driver routine for the CLIPS function
bsave. The function Bsave is called by this function to
perform the code generation.

ARGUMENTS: No actual arguments. The CLIPS arguments passing
routines are used to extract arguments when this function is
called from the CLIPS environment.

BsaveExpression

PURPOSE: Writes the binary representation of an expression to a file.

ARGUMENTS: A pointer to a file and a pointer to an expression.

OTHER NOTES: Uses and increments the value of the global variable
ExpressionCount to convert the pointers (to other
expressions) found in the expression to integer index values.
Symbols, floats, integers, functions, and pointers to other
constructs (such as generic functions) already have index
values computed for them. The index values for the
expression are converted back to addresses when a bload
is performed.

GenWrite

PURPOSE: Provides a generic capability for writing binary output to a
file.

ARGUMENTS: A pointer to the data to be written, the length of the data, and
a pointer to a file.

MarkNeededItems

PURPOSE: Given an expression, marks the symbols, floats, integers,
and functions contained within the expression as being
needed by this binary image.

ARGUMENTS: A pointer to an expression.

CLIPS Architecture Manual 239

INTERNAL FUNCTIONS

BsaveAllExpressions

PURPOSE: Called by function Bsave to write the binary representation
of all expressions used by this binary image. Calls the
expression function for each entry in the
ListOfBinaryItems to allow the binary entry to write out
needed expressions to the binary file.

ARGUMENTS: A pointer to a file.

OTHER NOTES: Sets the value of ExpressionCount to zero before calling
any of the expression functions for the binary items. This
value is then incremented as each binary item calls
BsaveExpression to save its expressions.

FindNeededFunctionsAndAtoms

PURPOSE: Calls the find function for each entry in the
ListOfBinaryItems to allow the binary entry to mark the
symbols, floats, integers, and functions which should be
saved as part of the binary image since they are needed by
the entry. Conversely unneeded symbols, floats, integers,
and functions will not be marked and thus will not be saved
as part of the binary image. This is important since it allows
binary images to be saved from versions of CLIPS
customized with user defined functions and then loaded into
non-customized versions as long as the user defined
functions were not referenced by the saved binary image.

FunctionBinarySize

PURPOSE: Computes the total number of bytes in string space for all the
required function names needed by the binary image.

RETURNS: A long integer.

MarkBuckets

PURPOSE: Replaces the bucket slot of each entry in the SymbolTable,
IntegerTable, and FloatTable with an integer index that
will be used to refer to that value. For example, the seventh
symbol in the SymbolTable has the value 7 stored in its
bucket slot (which would normally indicate the location in the
SymbolTable that the symbol is stored).

240 Binary Save Module

MarkNeededFlags

PURPOSE: Marks every symbol, float, integer, and function as being
unneeded by this binary image. This function is called before
the binary items in the ListOfBinaryItems are allowed to
mark symbols, floats, integers, and functions as being
needed.

UnmarkBuckets

PURPOSE: Restores the bucket slot of each entry in the SymbolTable,
IntegerTable, and FloatTable with its appropriate value.
This function is called to reverse the changes made by
MarkBuckets.

WriteBinaryFooter

PURPOSE: Writes the global variable BinaryPrefixID to the specified
file to indicate that the end of a binary file has been reached.

ARGUMENTS: A pointer to a file.

WriteBinaryHeader

PURPOSE: Writes the global variables BinaryPrefixID and
BinaryVersionID to the specified file to indicate that the file
is a binary file. The BinaryPrefixID is used to indicate that
the file is a binary file and the BinaryVersionID is used to
indicate which version of CLIPS created the file.

ARGUMENTS: A pointer to a file.

WriteNeededIntegers

PURPOSE: Called by function Bsave to write the binary representation
of all the integers required by this binary image.

ARGUMENTS: A pointer to a file.

OTHER NOTES: The number of integers required by this image is written to
the binary file followed by the integers written in their binary
representation (not their ASCII string representation).

WriteNeededFloats

PURPOSE: Called by function Bsave to write the binary representation
of all the floats required by this binary image.

ARGUMENTS: A pointer to a file.

CLIPS Architecture Manual 241

OTHER NOTES: The number of floats required by this image is written to the
binary file followed by the floats written in their binary
representation (not their ASCII string representation).

WriteNeededFunctions

PURPOSE: Called by function Bsave to write the binary representation
of all the functions required by this binary image. This
function also assigns each required function an integer
index which is used in place of the function’s address to refer
to the function in the binary image.

ARGUMENTS: A pointer to a file.

OTHER NOTES: The number of functions required by this image is written to
the binary file, followed by the total amount of space in bytes
of all the required function names, followed by the names of
the functions written as C strings.

WriteNeededSymbols

PURPOSE: Called by function Bsave to write the binary representation
of all the symbols required by this binary image.

ARGUMENTS: A pointer to a file.

OTHER NOTES: The number of symbols required by this image is written to
the binary file, followed by the total amount of space in bytes
of all the required symbols, followed by the symbols written
as C strings.

242 Binary Save Module

Binary Load Module

The Binary Load Module (bload.c) provides the functionality for the bload command.
Binary Images which are loaded must first have been saved as a binary image using
the Binary Save Module (bsave.c). The following steps describe how a binary image is
loaded. A knowledge of how the binary save works is assumed.

The first step in loading a binary image is to load the binary header from the file to
determine if indeed the file is a binary image and whether it was created by the same
version of CLIPS that is loading it. Next the CLIPS environment is cleared. The
needed functions names are then loaded from the binary image. If any of these
functions are unavailable, then the binary load is aborted. It is possible to save a
binary image from a customized version of CLIPS which has additional functions not
available in the standard version of CLIPS and then load the binary image in a
standard or differently customized version of CLIPS as long as no customized
functions are used. After the needed function names have been loaded, the need
symbols, floats, and integers are loaded from the binary image, followed by all of the
needed expressions.

Once these basic items have been loaded from the binary image, construct
information is then loaded. A construct name is loaded from the binary image and then
the appropriate function for the registered construct is called to load the construct’s
binary image. If the construct is not registered, then the construct information in the
binary image is skipped. This makes it possible to load part of a binary image into a
customized version of CLIPS if all the needed constructs are not available. After a
construct’s binary image is read, the process is repeated to load another construct.
This process continues until the binary footer is encountered.

Finally, integer index references to symbols, floats, integers, and expressions are
replaced with actual pointer values to the specified data structures. Each registered
construct is also allowed to replace integer index references to data structures that it
references.

GLOBAL VARIABLES

BinaryPrefixID

PURPOSE: The character string that is placed at the beginning and end
of a binary file.

BinaryVersionID

PURPOSE: The character string BinaryVersionID placed after the
BinaryPrefixID at the beginning of a binary file to indicate
which version of CLIPS created the file.

ExpressionArray

PURPOSE: The array containing the expressions used by the current
binary image.

CLIPS Architecture Manual 243

FloatArray

PURPOSE: The array containing pointers to the floats required by the
current binary image.

FunctionArray

PURPOSE: The array containing pointers to the functions required by the
current binary image.

IntegerArray

PURPOSE: The array containing pointers to the integers required by the
current binary image.

SymbolArray

PURPOSE: The array containing pointers to the symbols required by the
current binary image.

INTERNAL VARIABLES

AbortBloadFunctions

PURPOSE: Contains a list of functions to be called whenever a bload
command is aborted due to an error.

AfterBloadFunctions

PURPOSE: Contains a list of functions to be after a binary image has
been loaded and refreshed during a bload command.
These functions are used for initialization unrelated to
loading the binary image (such as incremental reset for
rules).

BeforeBloadFunctions

PURPOSE: Contains a list of functions to be called before a binary
image is loaded during a bload command. These functions
are called after the environment has been cleared, but
before the binary image is loaded.

BinaryFileHandle

PURPOSE: Reference value for the binary file currently being loaded on
the IBM PC.

244 Binary Load Module

BinaryRefNum

PURPOSE: Reference value for the binary file currently being loaded on
the Macintosh.

BinaryFP

PURPOSE: Reference value for the binary file currently being loaded on
machines other than the Macintosh or IBM PC.

BloadActive

PURPOSE: Boolean value indicating whether a binary image is currently
loaded into the CLIPS environment.

BloadReadyFunctions

PURPOSE: Contains a list of functions to be called after the
BeforeBloadFunctions are called to determine if the
bload should continue or be aborted.

ClearBloadReadyFunctions

PURPOSE: Contains a list of functions to be called before a clear
command of a binary image to determine if the clear should
even be attempted.

NumberOfExpressions

PURPOSE: Integer value indicating the number of expression data
structures contained in the ExpressionArray.

GLOBAL FUNCTIONS

 AddAbortBloadFunction

PURPOSE: Adds a function to the list of AbortBloadFunctions.

ARGUMENTS: A name to be associated with the abort function, the priority
of the function, and a pointer to a function to be called
whenever a bload is aborted.

AddAfterBloadFunction

PURPOSE: Adds a function to the list of AfterBloadFunctions.

CLIPS Architecture Manual 245

ARGUMENTS: A name to be associated with the abort function, the priority
of the function, and a pointer to a function after a bload is
performed.

AddBeforeBloadFunction

PURPOSE: Adds a function to the list of BeforeBloadFunctions.

ARGUMENTS: A name to be associated with the abort function, the priority
of the function, and a pointer to a function before a bload is
performed.

AddBloadReadyFunction

PURPOSE: Adds a function to the list of BloadReadyFunctions.

ARGUMENTS: A name to be associated with the abort function, the priority
of the function, and a pointer to a function to call to determine
if a bload command should be performed.

AddClearBloadReadyFunction

PURPOSE: Adds a function to the list of ClearBloadReadyFunctions.

ARGUMENTS: A name to be associated with the abort function, the priority
of the function, and a pointer to a function to call to determine
if the current binary image can be cleared.

Bload

PURPOSE: Main driver routine for coordinating the loading of a binary
file for the bload function.

ARGUMENTS: The name of the CLIPS binary file to be loaded.

RETURNS: Boolean value. TRUE, if the binary file was successfully
created, otherwise FALSE.

BloadCommand

PURPOSE: Loads a CLIPS binary file into the CLIPS environment. This
function is the driver routine for the CLIPS function bload.
The function Bload is called by this function to load the
binary image.

ARGUMENTS: No actual arguments. The CLIPS arguments passing
routines are used to extract arguments when this function is
called from the CLIPS environment.

246 Binary Load Module

Bloaded

PURPOSE: Indicates whether a binary image is currently loaded in the
CLIPS environment.

OTHER NOTES: Boolean value. Returns the value of the BloadActive
variable.

GenRead

PURPOSE: Provides a generic capability for reading binary input from a
file.

ARGUMENTS: A pointer to the storage area in which the data is to be read
and an integer indicating the amount of data to read. The
data is read from the file indicated by one of the variables
BinaryRefNum, BinaryFileHandle or BinaryFP
depending upon the machine on which CLIPS is running.

INTERNAL FUNCTIONS

AbortBload

PURPOSE: Handles error recovery if an error occurs while performing a
bload command. Calls the abort function for each binary
item.

AddBloadFunctionToList

PURPOSE: Adds a function to a list of functions. Called by routines such
as AddBloadReadyFunction.

ARGUMENTS: A name to be associated with the abort function, the priority
of the function, a pointer to a function, and a pointer to the
head of the list on which the function is to be placed.

RETURNS: A pointer to the new head of the list of functions (if the
function was added at the beginning of the list), otherwise
the old head of the list is returned. In either case, the function
is added to the list.

BloadExpressions

PURPOSE: Called by function Bload to load all of the expressions used
by the binary image into an array.

CLIPS Architecture Manual 247

RETURNS: A pointer to an array containing all the expression data
structures used by this binary image. The global variable
NumberOfExpressions is set by this function.

ClearBload

PURPOSE: Clears a binary image from the CLIPS environment.

RETURNS: Boolean value. TRUE if the binary image was successfully
cleared, otherwise FALSE.

FastFindFunction

PURPOSE: Searches for the data structure associated with a specified
function name.

ARGUMENTS: A pointer to the name of the function and a pointer to a
function data structure in the ListOfFunctions.

RETURNS: A pointer to the function data structure of the specified
function if the function was found, otherwise NULL.

OTHER NOTES: This function is faster than FindFunction because the
functions required by the binary image should have been
written out in the same order that they appear in the the
ListOfFunctions. Since the starting location of the search
can be specified, the last value returned by
FastFindFunction can be used as starting location for the
next search.

GenClose

PURPOSE: Provides a generic capability for closing a binary file.

ARGUMENTS: None. Closes the file specified by one of the global variables
BinaryRefNum, BinaryFileHandle or BinaryFP
depending upon the machine on which CLIPS is running.

GenOpen

PURPOSE: Provides a generic capability for opening a binary file.

ARGUMENTS: The name of the file to be opened.

RETURNS: Boolean value. TRUE if the file was successfully opened,
otherwise, FALSE. Also sets the machine specific global
variables storing the pointers or values which refer to the file
just opened. For the Macintosh, the variable
BinaryRefNum is set. For the IBM PC, the variable

248 Binary Load Module

BinaryFileHandle is set. For all other machines, the
variable BinaryFP is set.

ReadNeededFloats

PURPOSE: Called by function Bload to generate an array containing
the pointers to floats required by the binary image being
loaded. The required floats are first loaded from the CLIPS
binary file, then the function AddDouble is used to add the
float to the FloatTable. A pointer to the float’s data structure
is then stored in an array.

ARGUMENTS: A pointer to an integer in which the number of floats required
by this binary image is stored.

RETURNS: A pointer to an array containing the pointers to floats
required by this binary image. The number of floats
argument is also assigned a value by this function.

ReadNeededFunctions

PURPOSE: Called by function Bload to generate an array containing
the pointers to functions required by the binary image being
loaded. The names of the required functions are first loaded
from the CLIPS binary file, then the function
FastFindFunction is used to locate the data structure
corresponding to each function name. A pointer to the
function’s data structure is then stored in an array.

ARGUMENTS: A pointer to an integer in which the number of functions
required by this binary image is stored and a pointer to an
integer flag in which an error value is stored.

RETURNS: A pointer to an array containing the pointers to functions
required by this binary image. Both arguments to this
function are also assigned values. The error flag will be set
to TRUE if any of the functions required by this binary image
could not be found.

ReadNeededIntegers

PURPOSE: Called by function Bload to generate an array containing
the pointers to integers required by the binary image being
loaded. The required integers are first loaded from the
CLIPS binary file, then the function AddLong is used to add
the integer to the IntegerTable. A pointer to the integer’s
data structure is then stored in an array.

CLIPS Architecture Manual 249

ARGUMENTS: A pointer to an integer in which the number of integers
required by this binary image is stored.

RETURNS: A pointer to an array containing the pointers to integers
required by this binary image. The number of integers
argument is also assigned a value by this function.

ReadNeededSymbols

PURPOSE: Called by function Bload to generate an array containing
the pointers to symbols required by the binary image being
loaded. The required symbols are first loaded from the
CLIPS binary file, then the function AddSymbol is used to
add the symbol to the SymbolTable. A pointer to the
symbol’s data structure is then stored in an array.

ARGUMENTS: A pointer to an integer in which the number of symbols
required by this binary image is stored.

RETURNS: A pointer to an array containing the pointers to symbols
required by this binary image. The number of symbols
argument is also assigned a value by this function.

RefreshExpressions

PURPOSE: Converts all of the integer index values found in expressions
in the ExpressionArray to actual addresses.

250 Binary Load Module

Construct Compiler Module

The Construct Compiler Module (conscomp.c) provides the functionality for the
constructs-to-c command by generating a set of C source code files representing
the constructs currently loaded in the CLIPS environment. The files can then be
compiled and linked with a runtime version of CLIPS specifically compiled for use with
files generated by the construct compiler. The runtime version of CLIPS is smaller than
standard version of CLIPS since a significant amount of code used for parsing
constructs is removed.

The construct compiler works in a manner similar to a binary save and load.
However, instead of dumping CLIPS constructs to a file as binary data, the construct
compiler dumps the C code representation of the constructs to a C source file which is
converted to binary data by a compiler. Since the resulting object file can be linked
directly with CLIPS, there is no need to load the constructs. In addition, saving a binary
image requires that pointer references be converted to integer indexes which must be
converted back to pointer references when the binary image is loaded. When
generating C code using the construct compiler, pointer references can be directly
expressed as pointer references which can be automatically resolved by the compiler
and linker.

As an example of how the construct compiler works, assume that the following
deffacts has been entered into the CLIPS knowledge base.

(deffacts start-info
 (point 3.7 5.3))

In addition, the following initial-facts deffacts is automatically entered into the CLIPS
knowledge base.

(deffacts initial-fact
 (initial-fact))

Now, assume that the user entered the following command.

CLIPS> (constructs-to-c xmp 3)
CLIPS>

The first step taken by the construct compiler is to generate a header file which will be
used by the C source files which will be generated. Since the symbol xmp was given a
the prefix symbol, the header file “xmp.h” will be generated. Initially, all extern
definitions for user and system defined functions are written to this header file. Later,
as needed, other extern definitions for data structures will be written to this file so that
other files can access the data structures.

Next, all symbols, floats, integers, and user-defined and system function definitions
(those defined using DefineFunction) are written out to files. When creating file
names, a naming convention is used by construct compiler. The first number
appended to the file name prefix indicates the general contents of the file and the
second number appended indicates the nth file of that type. For example, if three files
were required to save all symbols and the number used to indicate symbol files was 2,
then the files would be name “xmp2_1.c,” “xmp2_2.c,” and “xmp2_3.c.”

CLIPS Architecture Manual 251

Once all basic data types have been written to files, each construct that was
registered with the construct compiler using the AddCodeGeneratorItem function is
called so that it can generate its own C files. Each construct is only responsible for
generating the code for the data structures that it has defined. References to symbols,
floats, and integers are resolved by calling the functions PrintSymbolReference,
PrintFloatReference, and PrintIntegerReference which will print the appropriate
reference to the data item in the C file being generated by the construct. Each
construct must also call the ExpressionToCode function for any expressions that it
needs saved. This function will generate the appropriate code for the expression and
print a reference to the expression in the C file being generated by the construct.
Finally, although constructs are not required to, they should attempt to honor the limit
on the maximum number of array elements which should be placed in a file.

Once all constructs have generated code, the initialization function is written and
each construct is given the opportunity to add code to this function. For the example
above, the initialization function would be named InitCImage_3.

Returning to the deffacts example shown previously, if the deffacts data structure
were defined as follows

struct deffacts
 {
 struct symbol *name;
 char *ppForm;
 struct expression *assertItems;
 struct deffacts *next;
 };

then the following source code might be generated to represent all deffacts constructs.

#include "xmp.h"

struct deffacts dft3_1[] = {
{&shn3_1[166],NULL,&exp3_1[0],&dft3_1[1]},
{&shn3_1[287],NULL,&exp3_1[2],NULL}};

The first line of code includes the header file “xmp.h”. This file is needed in order to
access the data structures representing symbols and expressions. The array name
dft3_1 indicates that the image ID for the files generated by the construct compiler is 3
and that this is the first file containing deffacts structures. The reference &shn3_1[166]
would be a pointer to the symbol data structure for the initial-facts symbol. Similarly,
the reference &shn3_1[287] would be a pointer to the symbol data structure for the
start-info symbol. The references &exp3_1[0] and &exp3_1[2] point to the expressions
which assert the facts specified by the deffacts. Finally, the first dft3_1 array element
contains the reference &dft3_1[1] which is simply a pointer to the next deffacts in the
list.

GLOBAL VARIABLES

None.

252 Construct Compiler Module

INTERNAL VARIABLES

ExpressionCount

PURPOSE: An integer value representing the number of expression
data structures which have been written to the current
ExpressionFP file.

ExpressionFP

PURPOSE: A pointer to the file to which code for expression is currently
being written.

ExpressionHeader

PURPOSE: Boolean flag indicating whether an array declaration needs
to be written before expression data structures can be written
to the current ExpressionFP file.

ExpressionVersion

PURPOSE: An integer value representing the number of different
ExpressionFP files that have been opened for the module
being generated.

FilePrefix

PURPOSE: A pointer to the file name prefix string used to generate the
file names for storing the C code (the first argument to
constructs-to-c).

HeaderFP

PURPOSE: A pointer to the header file for the code module being
generated.

ImageID

PURPOSE: Integer value containing the module ID number for the
generated code (the second argument to constructs-to-c).

ListOfCodeGeneratorItems

PURPOSE: Contains a list of data structures used to call functions for
various constructs which generate C code.

CLIPS Architecture Manual 253

MaxIndices

PURPOSE: Integer value containing the preferred maximum number of
array elements to store in a single file (the third argument to
constructs-to-c).

GLOBAL FUNCTIONS

AddCodeGeneratorItem

PURPOSE: Adds an item to the ListOfCodeGeneratorItems. Every
construct that generates code for constructs-to-c must use
this function to install functions that will be called whenever a
constructs-to-c command is executed.

ARGUMENTS: A name to be associated with the code generator item, the
priority of the item, a pointer to a function which is called
before constructs-to-c begins generating code, a pointer
to a function which is called for generating the C code data
structures for the item, and a pointer to a function which is
called to generate initialization C code for the
InitCImage_<id> function.

ConstructsToCCommand

PURPOSE: Converts CLIPS constructs currently loaded into the CLIPS
environment into C data structures and stores them in a file.
This function is the driver routine for the CLIPS command
constructs-to-c. The function GenerateCode is called by
this function to perform the code generation.

ARGUMENTS: No actual arguments. The CLIPS arguments passing
routines are used to extract arguments when this function is
called from the CLIPS environment.

ConstructsToCCommandDefinition

PURPOSE: Sets up the definition of constructs-to-c command.

ExpressionToCode

PURPOSE: Prints a C code reference to an expression to a specified file
and writes the C code representation of an expression to the
current file storing expressions.

ARGUMENTS: A pointer to an open file and a pointer to an expression. The
C code reference to the expression is written to the file
pointer passed as a parameter and the C code

254 Construct Compiler Module

representation of the expression (to which the reference
refers) is written to the file stored in the ExpressionFP
global variable.

RETURNS: Integer value. 1 if the C code representation was
successfully generated and written to the file, 0 if a NULL
expression pointer was passed as an argument (in which
case the C code representation is not written but the string
“NULL” is written as the code reference), and -1 if the C code
was not successfully generated.

OTHER NOTES: The function DumpExpression is called to write the C
code representation of the expression.

NewCFile

PURPOSE: Opens a new file for writing C code.

ARGUMENTS: A pointer to the file name prefix string used to generate the
file names for storing the C code, an integer suffix indicating
the general contents of the file (e.g. 4 for defrules), and
another integer suffix indicating the count of files for this type
(e.g. the 5th file containing defrule information). For example,
the file name “mab4_5.c” would be generated for the prefix
string “mab” for the 5th file containing defrule information
(assuming that 4 was the identification number for defrules).

RETURNS: A pointer to the newly opened file or NULL if the file could
not be opened.

PrintDeffunctionReference

PURPOSE: Prints the C code representation of a pointer to a deffunction
to a file.

ARGUMENTS: A pointer to an open file and a pointer to a deffunction.

PrintFloatReference

PURPOSE: Prints the C code representation of a FloatTable entry
pointer to a file.

ARGUMENTS: A pointer to an open file and a pointer to a FloatTable
entry.

PrintFunctionReference

PURPOSE: Prints the C code representation of a pointer to a function
defined using DefineFunction.

CLIPS Architecture Manual 255

ARGUMENTS: A pointer to an open file and a pointer to function.

PrintGenericFunctionReference

PURPOSE: Prints the C code representation of a pointer to a generic
function to a file.

ARGUMENTS: A pointer to an open file and a pointer to a generic function.

PrintIntegerReference

PURPOSE: Prints the C code representation of an IntegerTable entry
pointer to a file.

ARGUMENTS: A pointer to an open file and a pointer to a IntegerTable
entry.

PrintSymbolReference

PURPOSE: Prints the C code representation of a SymbolTable entry
pointer to a file.

ARGUMENTS: A pointer to an open file and a pointer to a SymbolTable
entry.

INTERNAL FUNCTIONS

DumpExpression

PURPOSE: Prints a C code reference to an expression to a file.

ARGUMENTS: A pointer to an expression. The file the expression is written
to is stored in the ExpressionFP global variable.

FloatsToCode

PURPOSE: Called by function GenerateCode to write the C code
representation of all FloatTable entries to one or more files.

ARGUMENTS: A pointer to the file name prefix string used to generate the
file names for storing the C code and an integer starting
value for the file count ID. In generating file names, the
name prefix is appended by the characters “1_” followed by
an integer file count ID. The extension “.c” is then added to
the file name.

RETURNS: Integer value. If the C code was successfully generated and
written to the file(s), then the file count ID for the next file to

256 Construct Compiler Module

be generated is returned, otherwise zero is returned. If only
one file is generated the value returned will be one greater
than the file count ID passed as an argument.

FunctionsToCode

PURPOSE: Called by function GenerateCode to write the C code
representation of all functions defined using
DefineFunction to one or more files.

ARGUMENTS: A pointer to the file name prefix string used to generate the
file names for storing the C code. In generating file names,
the name prefix is appended by the characters “2_” followed
by an integer file count ID. The extension “.c” is then added
to the file name.

RETURNS: Boolean value. TRUE, if the C code was successfully
generated and written to the file(s), otherwise FALSE.

GenerateCode

PURPOSE: Main driver routine for coordinating code generation for the
constructs-to-c function.

ARGUMENTS: A pointer to the file name prefix string used to generate the
file names for storing the C code (the first argument to
constructs-to-c), the module ID number for the generated
code (the second argument to constructs-to-c), and the
preferred maximum number of array elements to store in a
single file (the third argument to constructs-to-c).

RETURNS: Boolean value. TRUE, if the C code was successfully
generated and written to the file(s), otherwise FALSE.

HashTablesToCode

PURPOSE: Called by function GenerateCode to write the C code
representation of the IntegerTable, FloatTable, and
SymbolTable each to its own file.

ARGUMENTS: A pointer to the file name prefix string used to generate the
file names for storing the C code. In generating file names,
the name prefix is appended by the characters “1_” followed
by an integer file count ID (1 for the SymbolTable, 2 for the
FloatTable, and 3 for the IntegerTable). The extension
“.c” is then added to the file name.

RETURNS: Boolean value. TRUE, if the C code was successfully
generated and written to the files, otherwise FALSE.

CLIPS Architecture Manual 257

IntegersToCode

PURPOSE: Called by function GenerateCode to write the C code
representation of all IntegerTable entries to one or more
files.

ARGUMENTS: A pointer to the file name prefix string used to generate the
file names for storing the C code and an integer starting
value for the file count ID. In generating file names, the
name prefix is appended by the characters “1_” followed by
an integer file count ID. The extension “.c” is then added to
the file name.

RETURNS: Integer value. If the C code was successfully generated and
written to the file(s), then the file count ID for the next file to
be generated is returned, otherwise zero is returned. If only
one file is generated the value returned will be one greater
than the file count ID passed as an argument.

ListUserFunctions

PURPOSE: Writes C code extern declarations for all functions defined
using DefineFunction in the header file for the construct
module being generated.

ARGUMENTS: A file pointer to the header file for the construct module being
generated.

MarkBuckets

PURPOSE: Replaces the bucket slot of each entry in the SymbolTable,
IntegerTable, and FloatTable with an integer index that
will be used to refer to that value. For example, the seventh
symbol in the SymbolTable has the value 7 stored in its
bucket slot (which would normally indicate the location in the
SymbolTable that the symbol is stored).

PrintCString

PURPOSE: Prints the C code representation of a string replacing
backslashes, quotation marks, and carriage returns with the
appropriate character escape sequences.

ARGUMENTS: A pointer to an open file and a pointer to a string.

SetUpInitFile

PURPOSE: Writes the C code function needed for the initialization of a
runtime module to a file. The function written is the

258 Construct Compiler Module

InitCImage_<id> function described in section 5 of the
Advanced Programming Guide.

ARGUMENTS: A pointer to the file name prefix string used to generate the
file name for storing the C code. In generating the file name,
the name prefix is appended by a “.c” extension.

RETURNS: Boolean value. TRUE, if the C code was successfully
generated and written to the file(s), otherwise FALSE.

SymbolsToCode

PURPOSE: Called by function GenerateCode to write the C code
representation of all SymbolTable entries to one or more
files.

ARGUMENTS: A pointer to the file name prefix string used to generate the
file names for storing the C code and an integer starting
value for the file count ID. In generating file names, the
name prefix is appended by the characters “1_” followed by
an integer file count ID. The extension “.c” is then added to
the file name.

RETURNS: Integer value. If the C code was successfully generated and
written to the file(s), then the file count ID for the next file to
be generated is returned, otherwise zero is returned. If only
one file is generated the value returned will be one greater
than the file count ID passed as an argument.

UnmarkBuckets

PURPOSE: Restores the bucket slot of each entry in the SymbolTable,
IntegerTable, and FloatTable with its appropriate value.
This function is called to reverse the changes made by
MarkBuckets.

CLIPS Architecture Manual 259

Primary Functions Module

The Primary Functions Module (sysprime.c) provides a set of environment commands
and procedural functions. Commands and functions provided are watch, unwatch,
clear, reset, exit, if, while, bind, progn, return, and break. In addition, several
functions for CLIPS internal use are defined in this module. These functions are nop,
constant, nonconstant, neq_field, eq_field, get_bind, pointer, get_field, and
get_end.

GLOBAL VARIABLES

BreakContext

PURPOSE: An integer flag indicating when the break function can be
validly called. This flag is saved and cleared upon entry into
a deffunction, generic function method or message-handler
and restored on exit.

ReturnContext

PURPOSE: An integer flag indicating when the return function can be
validly called. This flag is saved and set upon entry into a
deffunction, generic function method or message-handler
and restored on exit.

ReturnFlag

PURPOSE: An integer flag set when the return function is called and
ReturnContext is set. The flag is cleared by the enclosing
deffunction, generic function method or message-handler.

INTERNAL VARIABLES

BreakFlag

PURPOSE: An integer flag set when the break function is called and
BreakContext is set. The flag is cleared by the enclosing
while loop.

GLOBAL FUNCTIONS

Primary Function Definitions

PURPOSE: Makes appropriate DefineFunction calls to notify CLIPS of
functions defined in this module.

CLIPS Architecture Manual 261

INTERNAL FUNCTIONS

Primary and Internal Functions

PURPOSE: A series of functions which defines the primary CLIPS RHS
actions and internal functions listed above. See the Basic
Programming Guide for more detail on individual functions.

OTHER NOTES: Some functionality for these functions is contained in other
modules.

262 Primary Functions Module

Predicate Functions Module

The Predicate Functions Module (syspred.c) provides a number of predicates and sim-
ple mathematical functions commonly used in CLIPS. Predicate functions provided are
eq, neq, symbolp, stringp, lexemep, integerp, floatp, numberp, oddp, evenp,
multifieldp, pointerp, and, or, not, =, <>, >, <, >=, and <=. Mathematical functions
provided are * , /, +, - , div, set-auto-float-dividend, and get-auto-float-dividend.

GLOBAL VARIABLES

None.

INTERNAL VARIABLES

AutoFloatDividend

PURPOSE: Boolean flag which indicates whether the dividend of a
division operation is automatically converted to a floating
pointer number. By default, this behavior is enabled.

GLOBAL FUNCTIONS

PredicateFunctionDefinitions

PURPOSE: Makes appropriate DefineFunction calls to notify CLIPS of
functions defined in this module.

INTERNAL FUNCTIONS

Predicate and Math Functions

PURPOSE: A series of functions which defines predicate and math-
ematical functions listed above. See the Basic Programming
Guide for more detail on individual functions.

CLIPS Architecture Manual 263

I/O Functions Module

The I/O Functions Module (sysio.c) provides a number of functions convenient for per-
forming I/O. Among these are open, close, read, readline, printout, and format.

GLOBAL VARIABLES

None.

INTERNAL VARIABLES

None.

GLOBAL FUNCTIONS

IOFunctionDefinitions

PURPOSE: Makes appropriate DefineFunction calls to notify CLIPS of
functions defined in this module.

LOCAL FUNCTIONS

I/O Functions

PURPOSE: A series of functions which defines I/O functions listed above.
See the Basic Programming Guide for more detail on the
individual functions.

CLIPS Architecture Manual 265

Secondary Functions Module

The Secondary Functions Module (syssecnd.c) provides a set of useful functions that
perform a wide variety of useful tasks. Functions provided are trunc, integer, float,
abs, min, max, str-assert, setgen, gensym, gensym*, system, length, time,
random, seed, conserve-mem, release-mem, mem-used, mem-requests,
and options.

GLOBAL VARIABLES

None.

INTERNAL VARIABLES

GensymNumber

PURPOSE: An integer value used by gensym and gensym* in creating
symbols.

GLOBAL FUNCTIONS

SecondaryFunctionDefinitions

PURPOSE: Makes appropriate DefineFunction calls to notify CLIPS of
functions defined in this module.

INTERNAL FUNCTIONS

Secondary Functions

PURPOSE: A series of functions which defines secondary CLIPS RHS
actions listed above. See the Basic Programming Guide for
more detail on individual functions.

OTHER NOTES: Some functionality for these functions is contained in other
modules.

CLIPS Architecture Manual 267

Multifield Functions Module

The Multifield Functions Module (multivar.c) provides a set of useful functions for use
with multifield values. Functions provided are nth, member, subset, mv-subseq,
mv-delete, mv-append, mv-replace, str-explode, and str-implode.

GLOBAL VARIABLES

None.

INTERNAL VARIABLES

None.

GLOBAL FUNCTIONS

MultifieldFunctionDefinitions

PURPOSE: Makes appropriate DefineFunction calls to notify CLIPS of
functions defined in this module.

INTERNAL FUNCTIONS

Multifield Functions

PURPOSE: A series of functions which defines the CLIPS multifield
functions listed above. See the Basic Programming Guide
for more detail on individual functions.

CLIPS Architecture Manual 269

String Functions Module

The String Functions Module (strings.c) provides a set of useful functions for
manipulating strings. Functions provided are str-length, str-compare, upcase,
lowcase, sub-string, str-index, str-cat, sym-cat, eval, and build.

GLOBAL VARIABLES

None.

INTERNAL VARIABLES

None.

GLOBAL FUNCTIONS

StringFunctionDefinitions

PURPOSE: Makes appropriate DefineFunction calls to notify CLIPS of
functions defined in this module.

INTERNAL FUNCTIONS

String Functions

PURPOSE: A series of functions which define the CLIPS string functions
listed above. See the Basic Programming Guide for more
detail on individual functions.

CLIPS Architecture Manual 271

Math Functions Module

The Math Functions Module (math.c) provides a set of useful math functions beyond
the basic math functions provided by the Predicate Functions Module. Functions
provided are cos, sin, tan, sec, csc, cot, acos, asin, atan, asec, acsc, acot,
cosh, sinh, tanh, sech, csch, coth, acosh, asinh, atanh, asech, acsch, acoth,
mod, exp, log, log10, sqrt, pi, deg-rad, rad-deg, deg-grad, grad-deg, ** , and
round.

GLOBAL VARIABLES

None.

INTERNAL VARIABLES

None.

GLOBAL FUNCTIONS

MathFunctionDefinitions

PURPOSE: Makes appropriate DefineFunction calls to notify CLIPS of
functions defined in this module.

INTERNAL FUNCTIONS

Math Functions

PURPOSE: A series of functions which defines extended math functions
listed above. See the Basic Programming Guide for more
detail on individual functions.

OTHER NOTES: The Math Module does some checking to verify that illegal
arguments are not passed to some functions since actions
taken when an error occurs in these math functions can be
machine dependent.

CLIPS Architecture Manual 273

Text Processing Functions Module

The Text Processing Module (textpro.c) provides a set of useful functions for building
and accessing a hierarchical lookup system for multiple external files. Functions which
provide on-line help are also available. The functions provided are help, help-path,
fetch, toss, and print-region.

GLOBAL VARIABLES

None.

INTERNAL VARIABLES

None.

GLOBAL FUNCTIONS

HelpFunctionDefinitions

PURPOSE: Makes appropriate DefineFunction calls to notify CLIPS of
functions defined in this module.

INTERNAL FUNCTIONS

Text Processing Functions

PURPOSE: A series of functions which define the text processing and
help functions listed above. See the Basic Programming
Guide for more detail on individual functions.

CLIPS Architecture Manual 275

File Commands Module

The File Commands Module (intrfile.c) provides a set of useful interface commands
that performs certain file operations not associated with standard file I/O operations.
The functions provided are batch, load, save, bload, bsave, dribble-on, dribble-
off, crsv-trace-on, and crsv-trace-off.

GLOBAL VARIABLES

None.

INTERNAL VARIABLES

Batch and Dribble Globals

PURPOSE: Several variables containing information for batch and
dribble commands.

GLOBAL FUNCTIONS

FileFunctionDefinitions

PURPOSE: Makes appropriate DefineFunction calls to notify CLIPS of
commands defined in this module.

INTERNAL FUNCTIONS

File Commands

PURPOSE: A series of functions which define the file-oriented
commands listed above. See the Basic Programming Guide
for more detail on individual functions.

OTHER NOTES: Some functionality for these commands is provided in other
modules. The load command is one example of this.

CLIPS Architecture Manual 277

Deffunction Module

The Deffunction Module (deffnctn.c) manages all aspects of the deffunction construct
including parsing, execution, and removal. For a description of the deffunction
construct, see the Basic Programming Guide. The deffunction construct capability can
be removed by using the appropriate compile flag in the setup header file. The
deffunction data structure is summarized in the following diagram:

Execution Count (int)

Busy Count (int)

Name (Symbol Pointer)

Actions (Expression Pointer)

Pretty-Print Form (array of char)

Minimum Parameters (int)

Maximum Parameters (int)

Bload/Bsave Index (long int)

Previous Link (Deffunction Pointer)

Next Link (Deffunction Pointer)

The internal data structure of a
deffunction construct primarily
consists of: a symbolic name, two
integers which indicate the minimum
and maximum number of arguments
the deffunction will accept respectively
and a sequence of expressions which
comprise the body of the deffunction. If
a deffunction has a wildcard
parameter (i.e. the deffunction will
accept any number of arguments
greater than or equal to the minimum
number of arguments), the maximum
number of arguments field will have
the value -1. A busy count for each
deffunction reflects how many other
expressions in other constructs refer
to that deffunction. This busy count
must be zero before it is safe to delete
the deffunction.

Similarly, an execution count for each deffunction reflects how many times a
deffunction has been called. This execution count must be zero before a deffunction
can be modified. Other fields in the deffunction data structure include: the pretty-print
form, an index for use in binary load/save and the construct compiler, and pointers for
double links to other deffunctions. A new deffunction is added to the list of deffunctions,
DFList, before its actions are parsed so that it may be recursive, if desired.

When a deffunction is called, if the number of arguments is outside the acceptable
range, the call is immediately terminated and an error is generated. Otherwise, all the
actions of the deffunction are evaluated in order as if they were grouped in a progn.
The evaluation of the last expression in the deffunction body is returned as the value of
the deffunction, unless an error occurs or the return function is used (see the Basic
Programming Guide).

Deffunction calls are represented by an expression data structure where the type
field is PCALL (for procedure call) and the value field is the address of the
corresponding deffunction construct. The expressions for the arguments of the
deffunction are chained together via "next argument" pointers, and the whole chain is
attached to the "argument list" pointer of the deffunction call. When such an expression
is evaluated, the routines in the Evaluation Module call a special function,

CLIPS Architecture Manual 279

CallDeffunction, to actually evaluate the arguments and perform the actions
contained within the body of the deffunction.

The arguments of a deffunction are evaluated and stored in order in an array of
data objects called the deffunction parameter array. Variable references within the
body of a deffunction are replaced when the construct is loaded with function calls
which either access the bind list (see the Primary Functions Module), get the value of a
global variable (see the Defglobal Manager Module) or positionally access the
deffunction parameter array. For example, references to the second parameter of a
deffunction are replaced with a call to the function DFRtnUnknown, which accesses
the second data object in the parameter array at run-time.

A wildcard parameter allows the deffunction to accept any number of arguments.
All references to the wildcard parameter are replaced with a call to a special function,
DFWildargs, which groups all of the data objects in the parameter array starting at
the position of the wildcard parameter to the end of the array into a multifield data
object.

If a parameter (including a wildcard parameter) is rebound anywhere within the
body of the deffunction, all references to that parameter are replaced with calls to a
special function, DeffunctionGetBind, which first checks the bind list before
accessing the parameter array.

GLOBAL VARIABLES

deffunctionArray

PURPOSE: A pointer to an array of deffunction data structures loaded
using the bload command. When bload is in effect, DFList
and DFBot will point to the first and last elements of this
array respectively.

INTERNAL VARIABLES

CurrentDeffunctionName

PURPOSE: A symbol indicating the name of the currently executing
deffunction used for error and trace messages.

DeffunctionError

PURPOSE: A flag used to indicate when deffunction parsing errors
occur.

Deffunction Trace Strings

PURPOSE: BEGIN_TRACE and END_TRACE are the strings used in
trace printouts to indicate the beginning and end of
execution of a deffunction.

OTHER NOTES: Implemented as preprocessor constants.

280 Deffunction Module

DFBot

PURPOSE: A pointer to the last node in the list of all currently defined
deffunctions.

DFCount

PURPOSE: An intermediary counter used for deffunction data structures
during binary loads and saves.

DFInputToken

PURPOSE: An intermediary variable used for scanned tokens by the
deffunction parsing routines during a load.

DFList

PURPOSE: A pointer to the first node in the list of all currently defined
deffunctions.

DFParamArray

PURPOSE: A pointer to an array of data objects which are the evaluated
arguments for the currently executing deffunction.

DFParamSize

PURPOSE: An integer indicating the number of data objects in the
currently executing deffunction's parameter array.

WatchDeffunctions

PURPOSE: An integer flag indicating whether or not to print out trace
information whenever a deffunction begins and ends
execution. This flag is used by the watch command.

GLOBAL FUNCTIONS

CallDeffunction

PURPOSE: This routine is called by EvaluateExpression in the
Evaluation Module to process a deffunction call.

ARGUMENTS: 1) A pointer to a deffunction.
2) A list of expressions forming the deffunction arguments.
3) A pointer to a data object which will hold the return value
of the deffunction.

CLIPS Architecture Manual 281

OTHER NOTES: Following is a summary of CallDeffunction:

1. Count and check the number of arguments.
2. Save previous values of globals, such as
CurrentDeffunctionName, and set them for the new
deffunction.
3. Increment the evaluation depth (see the Evaluation
Module).
4. Evaluate the arguments and store them in the deffunction
parameter array.
5. Save the state of the bind list and then destroy it.
6. Save the states of the return and break contexts and set
them to FALSE.
7. Increment the execution count of the deffunction.
8. Call EvaluateExpression for the actions of the
deffunction and capture the result.
9. Restore all global values to their previous states.
10. Decrement the execution count of the deffunction.
11. Decrement the evaluation depth.
12. Clear ReturnFlag.
13. Adjust the evaluation depth of the return value (see
PropogateReturnValue in the Evaluation Module).
14. Perform garbage collection.

CmdListDeffunctions

PURPOSE: Lists all the currently defined deffunctions.

OTHER NOTES: Implementation of the CLIPS function list-deffunctions.

CmdPPDeffunction

PURPOSE: Displays the pretty-print form of the deffunction specified by
the CLIPS supplied argument.

OTHER NOTES: Implementation of the CLIPS function ppdeffunction.

CmdUndeffunction

PURPOSE: Removes a deffunction.

OTHER NOTES: Implementation of the CLIPS function undeffunction.

DeffunctionGetBind

PURPOSE: Determines the value of a specified variable reference within
the body of a deffunction. The symbolic name of the variable
and an index indicating if the variable is a deffunction
parameter are CLIPS supplied arguments. If the variable is

282 Deffunction Module

on the bind list, that value is returned. Otherwise, the value of
the parameter specified by the index is returned. In the event
that the variable is neither on the bind list nor a parameter,
an error will be generated.

ARGUMENTS: A pointer to a data object which will hold the value of the
bound variable.

OTHER NOTES: Implementation of the internal CLIPS function (df-getbind).

Used for general variable references, including bind list
variables and deffunction parameters which are rebound
within the actions of the deffunction. If the index is zero, the
variable is not a deffunction parameter. The absolute value
of the index minus one is the position of the parameter in the
deffunction parameter array. If the index is less than zero, the
variable corresponds to the wildcard parameter.

DFRtnUnknown

PURPOSE: Gets the value of the specified element of the deffunction
parameter array, where the element index plus one is given
as a CLIPS supplied argument.

ARGUMENTS: A pointer to a data object which will hold the value of the
bound variable.

OTHER NOTES: Implementation of the internal CLIPS function
(df-runknown).

Used for references to regular deffunction parameters which
are never rebound within the actions of the deffunction.

DFWildargs

PURPOSE: Gets the values of the specified elements of the deffunction
parameter array and groups them into a multifield data
object, where the range of elements is given by a CLIPS
supplied argument minus one to the end of the deffunction
parameter array.

ARGUMENTS: A pointer to a data object which will hold the value of the
bound variable.

OTHER NOTES: Implementation of the internal CLIPS function
(df-wildargs).

Used for references to a wildcard deffunction parameter
which is never rebound within the actions of the deffunction.

CLIPS Architecture Manual 283

Embedded Access for
Deffunctions

PURPOSE: The following functions are provided for embedded access
and are documented in the Advanced Programming Guide:
DeleteDeffunction, FindDeffunction,
GetDeffunctionName, GetDeffunctionPPForm,
GetNextDeffunction, IsDeffunctionDeletable and
ListDeffunctions.

FindDeffunctionBySymbol

PURPOSE: Determines the address of a specified deffunction.

ARGUMENTS: A pointer to a symbol.

RETURNS: A pointer to a deffunction.

InitializeDeffunctions

PURPOSE: Defines all functions and commands for the deffunction
construct. Sets up all necessary load, clear, save, watch,
constructs-to-c and bload/bsave interfaces.

OTHER NOTES: Initialization differs between standard and run-time
configurations.

SetListOfDeffunctions

PURPOSE: Initializes the global variables DFList and DFBot to point to
the top and bottom respectively of the given list of
deffunctions.

ARGUMENTS: A pointer to the top of a list of deffunctions.

OTHER NOTES: This function is used only in a run-time version of CLIPS.

INTERNAL FUNCTIONS

AddDeffunction

PURPOSE: Support routine for ParseDeffunction which allocates,
initializes and attaches a new deffunction to the list of
deffunctions.

ARGUMENTS: 1) The symbolic name of the new deffunction.
2) A list of expressions forming the actions of the deffunction.
3) The minimum number of parameters the deffunction will

284 Deffunction Module

accept.
4) The maximum number of parameters the deffunction will
accept (-1 if the deffunction has a wildcard parameter).
5) An integer code indicating if the deffunction being added
is a forward declaration (non-zero) or not (zero).

RETURNS: A pointer to the added deffunction.

CheckDeffunctionCall

PURPOSE: Determines if the number of CLIPS supplied arguments to a
particular deffunction call is appropriate.

ARGUMENTS: 1) A pointer to the deffunction.
2) The number of arguments passed.

RETURNS: The integer zero for an incorrect number of arguments,
non-zero otherwise.

ClearDeffunctions

PURPOSE: Used by the clear command to remove all currently defined
deffunctions.

RETURNS: The integer zero if not all deffunctions were successfully
cleared, non-zero otherwise.

OTHER NOTES: Deffunctions are removed after all other constructs except
defgenerics, for this insures that the deffunctions are no
longer in use. The use of priorities in AddClearFunction
accomplishes this ordering.

Deffunction Bload/Bsave
Functions

PURPOSE: A set of functions used by the bload and bsave commands
to process the deffunction construct.

Deffunction Constructs-To-C
Functions

PURPOSE: A set of functions used by the constructs-to-c command to
process the deffunction construct.

EvaluateDFParameters

PURPOSE: Support routine for CallDeffunction which evaluates all
the CLIPS supplied argument expressions for a deffunction

CLIPS Architecture Manual 285

call and stores the resulting data objects in the deffunction
parameter array (DFParamArray).

ARGUMENTS: 1) The list of parameter name expressions.
2) The number of parameters.

RETURNS: A pointer to an array of data objects containing the
evaluations of the deffunction argument expressions.

FindParameter

PURPOSE: Support routine for ParseDeffunction used to determine if
a parameter occurs more than once in a deffunction
parameter list.

ARGUMENTS: 1) The symbolic name of a parameter.
2) The list of parameters parsed so far.

RETURNS: The integer zero if the named parameter is not already in the
list, otherwise the position of the parameter in the list.

GrabWildargs

PURPOSE: Stores the deffunction parameter array elements from the
specified beginning index minus one to the end of the array
in the caller's multifield data object.

ARGUMENTS: 1) A pointer to a data object to hold the resulting multifield
value.
2) The index (one is the beginning) from which to start
copying the parameter array.

ParseDeffunction

PURPOSE: Used by the load command to parse a deffunction.

ARGUMENTS: The logical name of the input source.

RETURNS: The integer zero if there are no parsing errors, non-zero
otherwise.

ParseParameters

PURPOSE: Support routine for ParseDeffunction which parses a
deffunction parameter list.

ARGUMENTS: 1) The logical name of the input source.
2) A buffer for holding a pointer to the symbolic name of a

286 Deffunction Module

wildcard parameter (if any).
3) A buffer for an integer code indicating any parsing errors.

RETURNS: A linked list of expressions containing the symbolic names of
the deffunction parameters.

RemoveDeffunction

PURPOSE: Removes a specified deffunction.

ARGUMENTS: A pointer to a deffunction.

ReplaceParameters

PURPOSE: Support routine for ParseDeffunction which replaces all
variable references in the deffunction actions with
appropriate function calls that access the bind list, the
deffunction parameter array or global variables at run-time.

ARGUMENTS: 1) The list of action expressions.
2) The list of parameter name expressions.
3) The symbolic name of a wildcard parameter (if any).

RETURNS: The integer zero if there are no parsing errors, non-zero
otherwise.

SaveDeffunctions

PURPOSE: Used by the save command to write out the pretty-print
forms of all the currently defined deffunctions.

ARGUMENTS: The logical name of the output destination.

SaveDeffunctionHeaders

PURPOSE: Used by the save command to write out forward
declarations of all deffunctions before other constructs in the
event that the deffunctions are called from these other
constructs.

ARGUMENTS: The logical name of the output destination.

TraceDeffunction

PURPOSE: Used by the watch command to print out trace messages
when a deffunction begins and ends execution.

ARGUMENTS: A string indicating the beginning or end of execution of a
deffunction.

CLIPS Architecture Manual 287

Generic Function Commands Module

The Generic Function Commands Module (genrccom.c) manages the parsing and
general interface aspects of the defgeneric and defmethod constructs. For a
description of the defgeneric and defmethod constructs, see the Basic Programming
Guide. The generic function capability can be removed by using the appropriate
compile flag in the setup header file.

The generic function data structures are summarized in the following diagram:

Name
(Symbol Pointer)

Next and
Previous Links
(Generic Function

Pointers)

Implicit
Method

(CLIPS Function
Pointer)

Explicit
Methods
(Array)

Explicit
Method
Count
(int)

Next
Available
Method
Index
(int)

"Busy"
Count
(int)

Pretty-Print
Form

(array of char)

Binary
Load/Save

Index
(long int)

Actions
(Expression

Pointer)

Minimum
Restrictions

(int)

Maximum
Restrictions

(int)

Pretty-Print
Form

(array of char)

"Execution"
Count
(int)

Index
(int)

Restrictions
(Array)

Query
(Expression

Pointer)

Class List
Count
(int)

Class
Pointers
(Array)

The internal data structure of a defgeneric construct primarily consists of: a
symbolic name, an array of defmethod constructs (the explicit methods), a pointer to a

CLIPS Architecture Manual 289

system or user-defined external function (if any), which is overloaded by the generic
function (the implicit method) and an integer indicating the next available index for a
new method. A busy count for each generic function reflects how many other
expressions in other constructs refer to that generic function and how many times the
generic function has been called. This busy count must be zero before it is safe to
delete the generic function. Other fields in the generic function data structure include:
the number of methods, the pretty-print form, an index for use in binary load/save and
the construct compiler and pointers for double links to other generic functions. A new
defgeneric is added to the list of generic functions, GenericList, before the actions of
any its methods are parsed so that it may be recursive, if desired.

The internal data structure of a defmethod construct primarily consists of: two
integers which indicate the minimum and maximum number of arguments the method
will accept respectively, an array of parameter restriction data structures and a
sequence of expressions which comprise the body of the method. Each parameter
restriction data structure consists of: a sequence of classes, the number of classes in
this sequence and a query expression. The corresponding run-time generic function
argument must be an instance of one of these classes (if any) and the boolean query
(if any) must be true in order for the restriction to be satisfied. If a method has a
wildcard parameter (i.e. the method will accept any number of arguments greater than
or equal to the minimum number of arguments), the maximum number of arguments
field will have the value -1. Similarly, an execution count for each method reflects how
many times a method has been called as well as how many outstanding generic
function calls to which this method is applicable. This execution count must be zero
before any methods for the generic function to which this method belongs can be
modified. Other fields in the method data structure include: the pretty-print form and an
identifying index.

As each new method is defined and inserted into the appropriate generic function's
method array, the method array is maintained in sorted order according to
precedence. This eases the burden on the generic dispatch at run-time. The Generic
Function Functions Module covers method precedence in detail.

Generic function calls are represented by an expression data structure where the
type field is GCALL and the value field is the address of the corresponding defgeneric
construct. The expressions for the arguments of the generic function are chained
together via "next argument" pointers, and the whole chain is attached to the
"argument list" pointer of the generic function call. When such an expression is
evaluated, the routines in the Evaluation Module call a special function,
GenericDispatch, to actually evaluate the arguments and execute the method(s) of
the generic function. The Generic Function Functions Module covers the generic
dispatch in detail.

The arguments of a generic function are evaluated and stored in order in an array
of data objects called the method parameter array. Variable references within the body
of a defmethod are replaced when the construct is loaded with function calls which
either access the bind list, get the value of a global variable or positionally access the
method parameter array. For example, references to the second parameter of a
method are replaced with calls to the function RtnGenericUnknown which access
the second data object in the parameter array at run-time.

A wildcard parameter allows a method to accept any number of arguments. All
references to the wildcard parameter are replaced with a call to a special function,
GetGenericWildargs, which groups all of the data objects in the parameter array

290 Generic Function Commands Module

starting at the position of the wildcard parameter to the end of the array into a multifield
data object.

If a parameter (including a wildcard parameter) is rebound anywhere within the
body of a method, all references to that parameter are replaced with calls to a special
function, GetGenericBind, which first checks the bind list before accessing the
parameter array.

INTERNAL VARIABLES

GenericInputToken

PURPOSE: An intermediary variable used for scanned tokens by the
generic function parsing routines during a load.

GLOBAL FUNCTIONS

CmdListDefgenerics

PURPOSE: Lists all defgenerics in the system.

OTHER NOTES: Implementation of the CLIPS function list-defgenerics.

CmdListDefmethods

PURPOSE: Lists the methods of the generic function(s) specified by the
CLIPS supplied arguments.

OTHER NOTES: Implementation of the CLIPS function list-defmethods.

CmdUndefgeneric

PURPOSE: Removes a generic function and all associated methods.

OTHER NOTES: Implementation of the CLIPS function undefgeneric.

CmdUndefmethod

PURPOSE: Removes a generic function method.

OTHER NOTES: Implementation of the CLIPS function undefmethod.

Embedded Access for Generic
Functions

PURPOSE: The following functions are provided for embedded access
and are documented in the Advanced Programming Guide:
DeleteDefgeneric, DeleteDefmethod,
FindDefgeneric, GetNextDefgeneric,

CLIPS Architecture Manual 291

GetDefgenericName, GetDefgenericPPForm,
GetDefmethodDescription, GetNextDefmethod,
GetDefmethodPPForm, IsDefgenericDeletable,
IsDefmethodDeletable, ListDefgenerics and
ListDefmethods.

GetGenericBind

PURPOSE: Determines the value of a specified variable reference within
the body of a method. The symbolic name of the variable
and an index indicating if the variable is a method parameter
are CLIPS supplied arguments. If the variable is on the bind
list, that value is returned. Otherwise, the value of the
parameter specified by the index is returned. In the event
that the variable is neither on the bind list nor a parameter,
an error will be generated.

ARGUMENTS: A pointer to a data object to hold the variable's value.

OTHER NOTES: Implementation of the internal CLIPS function (gnrc-bind).

Used for general variable references, including bind list
variables and method parameters which are rebound within
the actions of the method. If the index is zero, the variable is
not a method parameter. The absolute value of the index
minus one is the position of the parameter in the method
parameter array. If the index is less than zero, the variable
corresponds to the wildcard parameter.

GetGenericWildargs

PURPOSE: Gets the values of the specified elements of the method
parameter array and groups them into a multifield data
object, where the range of elements is given by a CLIPS
supplied argument minus one to the end of the method
parameter array.

ARGUMENTS: A pointer to a data object to hold the variable's value.

OTHER NOTES: Implementation of the internal CLIPS function
(gnrc-wildargs).

Used for references to a wildcard method parameter which is
never rebound within the actions of the method.

PPDefgeneric

PURPOSE: Displays the pretty-print form of the defgeneric specified by
the CLIPS supplied argument.

292 Generic Function Commands Module

OTHER NOTES: Implementation of the CLIPS function ppdefgeneric.

PPDefmethod

PURPOSE: Displays the pretty-print form of the generic function method
specified by the CLIPS supplied arguments.

OTHER NOTES: Implementation of the CLIPS function ppdefmethod.

RtnGenericUnknown

PURPOSE: Gets the value of the specified element of the method
parameter array, where the element index plus one is given
as a CLIPS supplied argument.

ARGUMENTS: A pointer to a data object to hold the variable's value.

OTHER NOTES: Implementation of the internal CLIPS function
(gnrc-runknown).

Used for references to regular method parameters which are
never rebound within the actions of the method.

SetupGenericFunctions

PURPOSE: Defines all functions and commands for the defgeneric and
defmethod constructs. Sets up all necessary load, clear,
save, watch, constructs-to-c and bload/bsave
interfaces.

OTHER NOTES: Initialization differs between standard and run-time
configurations.

TypeOf

PURPOSE: Determines the type (class) of the CLIPS supplied argument.

ARGUMENTS: A pointer to a data object to hold the symbolic name of the
class of the CLIPS supplied argument.

OTHER NOTES: This function implements the CLIPS function type function
when COOL is not available. When COOL is available, the
functions type and class are implemented by
GetInstanceClassCmd (see the Instance Commands
Module).

CLIPS Architecture Manual 293

INTERNAL FUNCTIONS

AddParameter

PURPOSE: Support routine for ParseParameters which links
intermediate information for a method parameter and its
restrictions to the list of other method parameters.

ARGUMENTS: 1) The top of the parameter expression list.
2) The bottom of the parameter expression list.
3) The parameter symbolic name.
4) A pointer to a parameter restriction data structure.

RETURNS: The (new) top of the parameter expression list.

CheckGenericExists

PURPOSE: Determines if a specified generic function exists.

ARGUMENTS: 1) The name of the calling function.
2) The name of the generic function.

RETURNS: A pointer to the generic function (NULL if not found).

CheckMethodExists

PURPOSE: Determines if a specified method of a generic function exists.

ARGUMENTS: 1) The name of the calling function.
2) A pointer to the generic function.
3) The index of the method.

RETURNS: The method array index (-1 if not found).

DeleteTempRestricts

PURPOSE: Support routine for ParseParameters which deallocates
intermediate data structures used for method parameter
restrictions.

ARGUMENTS: The list of parameter expressions.

DuplicateParameters

PURPOSE: Support routine for ParseParameters which determines if
a method's parameter list contains any duplicate names.

ARGUMENTS: 1) The list of parameter name expressions.
2) Buffer for address of last node searched (can be used to

294 Generic Function Commands Module

later attach new parameter).
3) The symbolic name of the parameter being checked.

RETURNS: A non-zero integer if duplicates are found, zero otherwise.

FindParameter

PURPOSE: Support routine for ReplaceParameters which determines
the position of a particular parameter in the list of all method
parameters.

ARGUMENTS: 1) The symbolic name of a parameter.
2) The list of parameters parsed so far.

RETURNS: The integer zero if the named parameter is not already in the
list, otherwise the position of the parameter in the list.

GrabGenericWildargs

PURPOSE: Stores the method parameter array elements from the
specified beginning index minus one to the end of the array
in the caller's multifield data object.

ARGUMENTS: 1) A pointer to a data object to hold the resulting multifield
value.
2) The index (one is the beginning) from which to start
copying the parameter array.

PackRestrictionTypes

PURPOSE: Support routine for ParseRestriction which packs the
class restrictions for a method parameter into a contiguous
array for easy reference.

ARGUMENTS: 1) The restriction data structure.
2) The types expression list

OTHER NOTES: If COOL is not present, then the types are integer codes
representing the CLIPS types. -1 means all types are
acceptable.

ParseDefgeneric

PURPOSE: Used by the load command to parse a defgeneric.

ARGUMENTS: The logical name of the input source.

RETURNS: The integer zero if there are no parsing errors, non-zero
otherwise.

CLIPS Architecture Manual 295

ParseDefmethod

PURPOSE: Used by the load command to parse a defmethod.

ARGUMENTS: The logical name of the input source.

RETURNS: The integer zero if there are no parsing errors, non-zero
otherwise.

ParseMethodName

PURPOSE: Support routine for ParseDefgeneric which parses a
generic function name.

ARGUMENTS: The logical name of the input source.

RETURNS: The symbolic name of the method.

ParseMethodNameAndIndex

PURPOSE: Support routine for ParseDefmethod which parses a
method name and optional index.

ARGUMENTS: 1) The logical name of the input source.
2) Buffer for method index (0 if not specified).

RETURNS: The symbolic name of the method.

ParseParameters

PURPOSE: Support routine for ParseDefmethod which parses a
method parameter list.

ARGUMENTS: 1) The logical name of the input source.
2) Buffer for the parameter name list.
3) Buffer for wildcard symbol (if any).

RETURNS: The number of parameters, or -1 on errors.

ParseRestriction

PURPOSE: Support routine for ParseParameters which parses the
restrictions for a given method parameter.

ARGUMENTS: The logical name of the input source.

RETURNS: A pointer to a parameter restriction data structure, NULL on
errors.

296 Generic Function Commands Module

RemoveGeneric

PURPOSE: Removes a specified generic function and all its methods.

ARGUMENTS: A pointer to the generic function.

RETURNS: The integer one if successful, zero otherwise

RemoveGenericMethod

PURPOSE: Removes a specified method of a generic function.

ARGUMENTS: 1) A pointer to the generic function.
2) The array index of the method.

ReplaceParameters

PURPOSE: Support routine for ParseDefmethod which replaces all
variable references in the method actions with appropriate
function calls that access the bind list, the method parameter
array or global variables at run-time.

ARGUMENTS: 1) The list of action expressions.
2) The list of parameter name expressions.
3) The symbolic name of a wildcard parameter (if any).

RETURNS: The integer zero if there are no parsing errors, non-zero
otherwise.

SaveDefgenerics

PURPOSE: Used by the save command to write out forward
declarations of all generic functions before other constructs
in the event that the generic functions are called from these
other constructs.

ARGUMENTS: The logical name of the output destination.

SaveDefmethods

PURPOSE: Used by the save command to write out the pretty-print
forms of all the methods of currently defined generic
functions.

ARGUMENTS: The logical name of the output destination.

CLIPS Architecture Manual 297

ValidType

PURPOSE: Support routine for ParseRestriction which determines if a
class restriction list for a method parameter is comprised of
existing classes.

ARGUMENTS: The symbolic name of the restriction class.

RETURNS: When COOL is present, an expression containing a pointer
to the class, otherwise an expression list containing the
integer codes of the CLIPS types (see constant.h)
corresponding to the class, NULL on errors.

298 Generic Function Commands Module

Generic Function Functions Module

The Generic Function Functions Module (genrcfun.c) establishes the precedence
between different methods of a generic function when they are defined, manages the
generic dispatch and provides support routines for other internal manipulations of
generic functions and methods, such as allocation and deletion. For a description of
the defgeneric and defmethod constructs, see the Basic Programming Guide. The
generic function capability can be removed by using the appropriate compile flag in
the setup header file.

Whenever a new method for a generic function is defined, the method array for that
generic function is reallocated to make room for the new method information. The new
method is inserted into the array such that a sorted order according to precedence is
maintained. Section 8.5.2 in the Basic Programming Guide explains the method
precedence rules in detail. The precedence between any two methods is determined
by comparing field per field the parameter restrictions of the two methods.

When a generic function is called, CLIPS uses the generic function's arguments to
find and execute the appropriate method. This process is termed the generic
dispatch. The generic dispatch first forms a list of all the applicable methods to the
generic function call. The methods in this list are linked using a temporary data
structure called a method link:

Method Link
Next Link (Method Link Pointer)

Method (Method Pointer)

The first field is a pointer to an applicable method, and the second is a pointer to
another method link.

For every method in the method array of the generic function, the parameter
restriction list is checked against the actual arguments.

If the number of arguments is outside the acceptable range, the call is immediately
terminated and an error is generated. Otherwise, all the actions of the method are
evaluated in order as if they were grouped in a progn. The evaluation of the last
expression in the deffunction body is returned as the value of the deffunction, unless
an error occurs or the return function is used (see the Basic Programming Guide).
The mechanics of a generic dispatch are outlined in the description of the function
GenericDispatch.

GLOBAL VARIABLES

CurrentGeneric

PURPOSE: A pointer to the currently executing generic function.

CurrentMethod

PURPOSE: A pointer to the currently executing method.

CLIPS Architecture Manual 299

GenericList

PURPOSE: A pointer to the first node in the list of all currently defined
generic functions.

GenericListBottom

PURPOSE: A pointer to the last node in the list of all currently defined
generic functions.

GenericStackFrame

PURPOSE: A pointer to an array of expressions which are the evaluated
arguments for the currently executing generic function. This
variable is also referred to as the method parameter array.

OTHER NOTES: The method parameter array is stored as an array of
expressions rather than data objects so that implicit methods
(i.e. system functions) can easily be called with these
arguments.

GenericStackSize

PURPOSE: An integer indicating the number of data objects in the
currently executing generic function's method parameter
array.

WatchGenerics

PURPOSE: An integer flag indicating whether or not to print out trace
information whenever a generic function begins and ends
execution. This flag is used by the watch command.

WatchMethods

PURPOSE: An integer flag indicating whether or not to print out trace
information whenever an individual method begins and ends
execution. This flag is used by the watch command.

INTERNAL VARIABLES

Generic Function Trace Codes

PURPOSE: SYSTEM_NO and SYSTEM_YES are integer codes
used in trace printouts to indicate whether the method is an
explicit defmethod or a system function.

OTHER NOTES: Implemented as preprocessor constants.

300 Generic Function Functions Module

Generic Function Trace Strings

PURPOSE: BEGIN_TRACE and END_TRACE are the strings used in
trace printouts to indicate the beginning and end of
execution of a generic function or a method.

OTHER NOTES: Implemented as preprocessor constants.

Method Precedence Codes

PURPOSE: Three integer codes are used by
FindMethodByRestrictions to indicate the relative
precedence between two methods:
HIGHER_PRECEDENCE , IDENTICAL and
LOWER_PRECEDENCE.

OTHER NOTES: Implemented as preprocessor constants.

NextInCore

PURPOSE: A method link to the method shadowed by the currently
executing method.

OldGenericBusySave

PURPOSE: An integer variable used to preserve the busy count of a
generic function when a new method is added or deleted.
Methods which recursively call the generic function to which
they apply do not increment the generic function's busy
count. This makes it possible to tell when it is safe to delete a
generic function and its methods (i.e. when no other
constructs refer to the generic function and none of the
generic function's methods are executing).

TopOfCore

PURPOSE: The first method link of a linked list of methods which are
applicable to the current generic function call. The list is in
order according to method precedence.

GLOBAL FUNCTIONS

AddGeneric

PURPOSE: Support routine for ParseDefgeneric and
ParseDefmethod in the Generic Function Commands
Module. Adds a new generic function header to the list of
generic functions.

CLIPS Architecture Manual 301

ARGUMENTS: 1) Symbolic name of the new generic function.
2) Buffer for flag indicating if generic function is new or not.

RETURNS: A pointer to the (new) generic function.

AddMethod

PURPOSE: Support routine for ParseDefmethod in the Generic
Function Commands Module. Stores all parsed information
for a new method in the method array for the generic
function.

ARGUMENTS: 1) A pointer to the generic function.
2) Old method address (can be NULL).
3) Old method array position (can be -1).
4) Method index to assign (0 if don't care).
5) Parameter expression-list.
6) The number of parameters.
7) The wildcard symbol (NULL if none).
8) Method action expressions.
9) Method pretty-print form.

RETURNS: A pointer to the (new) method.

CallNextMethod

PURPOSE: Executes a method shadowed by the currently executing
method. This function can only be called from the actions of
currently executing method.

ARGUMENTS: A pointer to a data object to store the return value of the
shadowed method.

OTHER NOTES: Following is a summary of CallNextMethod:

1*. Save the state of the bind list and then destroy it.
2. If an explicit shadowed method (see NextInCore) is not
available, go to step 4.
3. Call EvaluateExpression for the actions of shadowed
method, capture result and go to step 5.
4. If there is an implicit method, call it with
EvaluateExpression, and capture the result.
5. Clear ReturnFlag.
6*. Restore the previous bind list.

*A bug exists in CLIPS version 5.1 that allows shadowed
methods to affect locally bound variables of methods which
are shadowing them. This is because Steps 1 and 6 are not
present in the CLIPS 5.1 implementation of

302 Generic Function Functions Module

CallNextMethod.

Implementation of the CLIPS function call-next-method.

ClearDefgenerics

PURPOSE: Used by the clear command to remove all currently defined
generic functions.

RETURNS: The integer zero if not all generic functions and methods
were successfully cleared, non-zero otherwise.

OTHER NOTES: Methods are removed before other constructs which may
use generic functions, for this insures that those constructs
are no longer in use by any methods. Generic functions are
cleared after the other constructs to insure that they are no
longer in use by the other constructs. The use of priorities in
AddClearFunction accomplishes this ordering.

ClearDefmethods

PURPOSE: Used by the clear command to remove all currently defined
generic function methods.

RETURNS: The integer zero if not all methods were successfully
cleared, non-zero otherwise.

DeleteMethodInfo

PURPOSE: Deallocates internal data structures associated with a
method but does not remove the method from the generic
function's method array.

ARGUMENTS: 1) A pointer to a generic function.
2) A pointer to a method.

FindDefgenericBySymbol

PURPOSE: Determines the address of a specified generic function.

ARGUMENTS: A pointer to a symbol.

RETURNS: A pointer to a generic function.

FindMethodByIndex

PURPOSE: Support routine for ParseDefmethod in the Generic
Function Commands Module. Determines if a method of the
specified index already exists for the generic function.

CLIPS Architecture Manual 303

ARGUMENTS: 1) A pointer to a generic function.
2) A method index.

RETURNS: The position of the method in the generic function's method
array, -1 if not found.

FindMethodByRestrictions

PURPOSE: Support routine for ParseDefmethod in the Generic
Function Commands Module. Examines the parsed
parameter restrictions for the new method and determines if
a method with matching parameter restrictions already exists
for the generic function.

ARGUMENTS: 1) A pointer to a generic function.
2) Parameter expression list.
3) Number of parameters.
4) Wildcard symbol (can be NULL).
5) Buffer for holding array position of where to add new
method (-1 if method already present).

RETURNS: A pointer to the method if found, NULL otherwise.

GenericDispatch

PURPOSE: This routine is called by EvaluateExpression in the
Evaluation Module to process a generic function call.

ARGUMENTS: 1) A pointer to a generic function.
2) A list of expressions forming the generic function
arguments.
3) A pointer to a data object which will hold the return value
of the generic function.

OTHER NOTES: Following is a summary of GenericDispatch:

1. Save previous values of globals, such as
CurrentGeneric, and set them for the new generic
function.
2. Increment the evaluation depth (see the Evaluation
Module).
3. Count and evaluate the arguments and store them in the
method parameter array.
4. Save the state of the bind list and then destroy it.
5. Save the states of the return and break contexts and set
them to FALSE.
6. Increment the busy count of the generic function.
7. Determine the set of applicable explicit methods (see
FindApplicableMethods). If there are no applicable

304 Generic Function Functions Module

explicit methods, go to step 9.
8. Call EvaluateExpression for the actions of explicit
method with the highest precedence, capture the result and
go to step 11.
9. If there is an implicit method, call it with
EvaluateExpression, capture the result and go to step 11.
10. Generate an error indicating that there are no applicable
methods for the generic function call.
11. Restore all global values to their previous states.
12. Decrement the execution count of the deffunction.
13. Decrement the evaluation depth.
14. Clear ReturnFlag.
15. Adjust the evaluation depth of the return value (see
PropogateReturnValue in the Evaluation Module).
16. Perform garbage collection.

MethodAlterError

PURPOSE: Displays an error message when an attempt is made to
modify an executing method.

ARGUMENTS: The name of the generic function.

MethodsExecuting

PURPOSE: Determines if any of the methods of a generic function are
currently executing.

ARGUMENTS: A pointer to a generic function.

RETURNS: The integer zero if no methods are executing, non-zero
otherwise.

NextMethodP

PURPOSE: Determines if a shadowed generic function method is
available for execution.

RETURNS: The integer zero if there is no method available, non-zero
otherwise.

OTHER NOTES: Implementation of the CLIPS function next-methodp.

PreviewGeneric

PURPOSE: Displays all the applicable methods for a particular generic
function call. The generic function and arguments are
supplied by CLIPS.

CLIPS Architecture Manual 305

OTHER NOTES: Implementation of the CLIPS function preview-generic.

PrintMethod

PURPOSE: Support routine for use with trace messages and debugging
displays which lists a brief description of the parameter
restrictions for a method.

ARGUMENTS: 1) Buffer for method text description.
2) Buffer size (not including space for null character).
3) A pointer to a method.

SetGenericList

PURPOSE: Initializes the global variables GenericList and
GenericListBottom to point to the top and bottom
respectively of the given list of generic functions.

ARGUMENTS: A pointer to the top of a list of generic functions.

OTHER NOTES: This function is used only in a run-time version of CLIPS.

INTERNAL FUNCTIONS

AddGenericMethod

PURPOSE: Support routine for AddMethod which inserts an initialized
method into the specified position of the method array.

ARGUMENTS: 1) A pointer to a generic function.
2) Position in the method array to add the new method.
3) The method index (0 if don't care).

RETURNS: A pointer to the new method.

DestroyMethodLinks

PURPOSE: Deallocates the linked list of applicable methods for a
particular generic function call.

ARGUMENTS: A method link.

DetermineRestrictionClass

PURPOSE: Support routine for IsMethodApplicable which
determines the class of a particular generic function
argument.

306 Generic Function Functions Module

ARGUMENTS: A pointer to an expression.

RETURNS: A pointer to the class of the argument, or NULL on errors.

OTHER NOTES: This function is used only when COOL is present. When
COOL is not present, the CLIPS type integer codes found in
constant.h are used in lieu of classes.

DisplayGenericCore

PURPOSE: Support routine for PreviewGeneric which displays the
linked list of applicable methods for a particular generic
function call.

ARGUMENTS: 1) A pointer to the generic function.
2) A method link for the list of applicable methods.

EvaluateGenericParameters

PURPOSE: Support routine for GenericDispatch which evaluates all
the CLIPS supplied argument expressions for a generic
function call and stores the resulting values in the method
parameter array (GenericStackFrame).

ARGUMENTS: 1) The list of parameter name expressions.
2) The number of parameters.

RETURNS: A pointer to an array of expressions containing the
evaluations of the generic function argument expressions.

FindApplicableMethods

PURPOSE: Support routine for GenericDispatch which determines
the set of methods which are applicable to a particular
generic function call.

ARGUMENTS: A pointer to a generic function.

RETURNS: A series of method links (TopOfCore), ranked according to
precedence, which are applicable to the generic function
call.

OTHER NOTES: The method array of the generic function is examined in
order, and each method that has parameter restrictions
which are satisfied by the generic function arguments are
attached to the end of a list of applicable methods. Since the
method array is in order according to precedence, the final
list of applicable methods is automatically ranked
appropriately.

CLIPS Architecture Manual 307

IsMethodApplicable

PURPOSE: Support routine for FindApplicableMethods which
determines if the parameter restrictions of a particular
method are satisfied by the generic function arguments.

ARGUMENTS: A pointer to the method.

RETURNS: The integer zero if the method is not applicable, non-zero
otherwise.

NewGeneric

PURPOSE: Support routine for AddGeneric which allocates and
initializes a new generic function.

RETURNS: A pointer to an initialized generic function.

RestoreBusyCount

PURPOSE: Uses the internal variable OldGenericBusySave to
restore the busy count of a generic function.

ARGUMENTS: A pointer to a generic function.

OTHER NOTES: Implemented as a preprocessor macro.

RestrictionsCompare

PURPOSE: Support routine for FindMethodByRestrictions which
compares a new restriction expression list for the method
currently being parsed with the parameter restrictions of an
existing method to determine which set of restrictions has
higher precedence.

ARGUMENTS: 1) The parameter restriction expression list.
2) The number of minimum restrictions.
3) The number of maximum restrictions (-1 if unlimited).
4) A pointer to a method with which to compare restrictions.

RETURNS: An integer code indicating the precedence between the two
restriction sets:
-1: New restrictions have higher precedence.
 0: New restrictions are identical.
 1: New restrictions have lower precedence.

308 Generic Function Functions Module

SaveBusyCount

PURPOSE: Uses the internal variable OldGenericBusySave to save
the busy count of a generic function.

ARGUMENTS: A pointer to a generic function.

OTHER NOTES: Implemented as a preprocessor macro.

TraceGeneric

PURPOSE: Used by the watch command to print out trace messages
when a generic function begins and ends execution.

ARGUMENTS: A string indicating the beginning or end of execution of a
generic function.

TraceMethod

PURPOSE: Used by the watch command to print out trace messages
when a method begins and ends execution.

ARGUMENTS: 1) A string indicating the beginning or end of execution of a
method.
2) A flag indicating whether the method being traced is an
explicit or implicit method.

TypeListCompare

PURPOSE: Support routine for RestrictionsCompare which
determines the precedence between the class lists on two
parameter restrictions.

ARGUMENTS: 1) A pointer to the first restriction data structure.
2) A pointer to the second restriction data structure.

RETURNS: An integer code indicating the precedence between the two
parameter restrictions' class lists:
-1: First restriction class list precedes the second.
 0: Restriction class lists are identical.
 1: Second restriction class list precedes the first.

CLIPS Architecture Manual 309

Generic Function Construct Compiler
Interface Module

The Generic Function Construct Compiler Interface Module (genrccmp.c) provides the
functionality for implementing the constructs-to-c functions for the defgeneric and
defmethod constructs.

CLIPS Architecture Manual 311

Generic Function Binary Load/Save Interface
Module

The Generic Function Binary Load/Save Interface Module (genrcbin.c) provides the
functionality for implementing the bload and bsave functions for the defgeneric and
defmethod constructs.

Generic function methods can contain pointers to defclasses in their restrictions. To
insure that the binary save files are identical whether or not COOL is present for
methods which use only the system-defined primitive type classes, integer codes are
used to represent the classes. If COOL is not present, these integer codes correspond
to the CLIPS type codes found in constant.h. Otherwise, these integer codes are
indices into an array of defclasses. The primitive type classes are stored in the same
order as reflected in the values of the codes in constant.h (see the description of
ClassList in the Class Functions Module).

CLIPS Architecture Manual 313

Class Commands Module

The Class Commands Module (classcom.c) manages the parsing and general
interface aspects of the defclass construct. For a description of the defclass construct,
see the Basic Programming Guide. The defclass construct capability, along with the
other features of the CLIPS Object-Oriented Language (COOL), can be removed by
using the appropriate compile flag in the setup header file.

The class data structures are summarized in the following diagrams:

Bitfields

Busy Count (int)

Hash Value (int)

Predecessor Count (int)

Name (Symbol Pointer)

Inheritance Links

Slot Information

Instance List (Instance Pointer)

Handler Information

Class List and Hash Table Links

Binary Load/Save Index (long int)

Pretty-Print Form (array of char)

Traversal IDs (array of char)

The last five boxes in italics are
expanded in further diagrams.

The internal data structure of a
defclass construct consists primarily
of: a symbolic name, a pointer to the
first direct instance (see the Instance
Commands Module for details on the
instance data structures), links to the
superclasses, subclasses and class
precedence list of the class, an array
of slot descriptors, a template of slot
pointers available to direct instances
and an array of message-handlers. A
busy count for each class reflects how
many other expressions in other
constructs refer to that class, how
many direct instances of the class
exist and how many times the class is
in use by various other COOL access
functions. This busy count must be
zero for a class and all its subclasses
before it is safe to delete the class.
Other fields in the defclass data
structure include: a hash value
indicating the position of the class in
the hash table, a predecessor class
count for use in determining the
precedence list for a class and its
subclasses, a bitmap where each bit
corresponds to a unique class
hierarchy traversal, a series of bitfields
indicating such things as whether the
class is a system class, links
connecting the class to the global
class list and hash table, the
pretty-print form and an index for use
in binary load/save and the construct
compiler.

The traversal id bitmap is an array of TRAVERSAL_BYTES (see the
Instance-Set Queries Module) characters. The number of bits in this map indicate how
many simultaneous class hierarchy traversals can examine a class at once. Many of

CLIPS Architecture Manual 315

the COOL access routines use recursive descent to access the subclasses of a class,
e.g. instances when listing the indirect instances of a class. Due to multiple
inheritance, it is possible for a class to be reached more than once via a
straightforward recursive descent on subclasses. Thus, it is necessary to mark classes
once they have been visited so that that branch of the search will not be repeated.
However, since there may be more than one class hierarchy traversal occurring at a
time (e.g. nested instance-set query functions), it is necessary to have unique markers
for each class per traversal. When a class hierarchy traversal begins, a unique
traversal id is requested via GetTraversalID. The bit corresponding to this id is
cleared in the traversal maps of all classes. When a traversal comes to a class, it first
checks the traversal bitmap against its traversal id with TestTraversalID. If the bit is
already set, then it is known that this branch has already been explored. Otherwise,
SetTraversalID is used to mark the class, and the traversal continues downwards.
When a traversal is complete, ReleaseTraversalID makes the id available for use
for another traversal. All of the variables, constants and functions dealing with traversal
ids can be found in the Instance-Set Queries Module.

Bitfields (all stored in one integer)

Primitive Type Code (5 bits)

Primitive (1 bit)

Abstract (1 bit)

System (1 bit)

Installed (1 bit)•
 •

 •
•
 •

 •
The bitfields are stored in a single integer and indicate the following information

about a class: whether all the atoms and construct references within the defclass have
had their busy counts incremented (i.e. whether the class has been installed), whether
the class is a predefined system class, whether the class can have direct instances,
whether the class corresponds to one of the primitive types defined in constant.h
(SYMBOL, INTEGER, etc.) and the primitive type code for the class if the "primitive"
bitfield is set.

Inheritance Links

Precedence List (Class Link Pointer)

Subclasses (Class Link Pointer)

Superclasses (Class Link Pointer)

•
 •

 •
•
 •

 •

The inheritance links are lists of the direct superclasses, direct subclasses and
inheritance precedence list of a class. All three of these lists are formed using an
intermediary data structure called a class link. These lists are not formed using direct

316 Class Commands Module

class pointers in the defclass itself because a particular class can be a superclass or
subclass (direct or indirect) of many different classes.

Class Link
Next Link (Class Link Pointer)

Class (Class Pointer)

The first field of this data structure is a pointer to a defclass, and the second is a
pointer to another link. The three inheritance links in a defclass are all class link
pointers. The inheritance links are built when the defclass is parsed (see
ParseDefclass). In particular, the precedence list is formed by
FindPrecedenceList, which is explained in detail in the Class Functions Module.

Class List and Hash Table Links

Previous-in-Hash Table (Class Pointer)

Next-in-List (Class Pointer)

Previous-in-List (Class Pointer)

•
 •

 •
•
 •

 • Next-in-Hash Table (Class Pointer)

Unlike the inheritance links, the links which place a class in the global class list
(ClassList) and class hash table (ClassTable) are implemented with direct class
pointers in the defclass. This is because these links are unique to a class.

Slot Information Instance Template (Slot Descriptor Pointer Array)

Slot Count (int)

Slot Descriptor Array•
 •

 •
•
 •

 •

Instance Template Slot Count (int)

Hash-Value Sorted Template Map (array of ints)

The slot information for a class is comprised of: an array of slot descriptors, which
includes information for all the slots directly defined in a class; the number of slot
descriptors; a template of all the slots which will be present in instances of a class,
including slots directly inherited from the class and indirectly inherited from
superclasses; the number of slots in the template; and an array of integer indices into
the instance template which gives the order of the template slots according to the hash
value of the symbolic names of the slots. The instance template is a contiguous array
of slot descriptor pointers sorted by inheritance from least specific to most specific
(slots from the same class are in the order they appeared in the defclass). The sorted

CLIPS Architecture Manual 317

template map allows an instance slot to be found easily by performing a binary search
on the symbolic hash value of the slot name. All direct instances of a class share the
same instance template; each instance only needs to have its own array of slot values
(see the general notes in the Instance Commands Module).

Slot

Read Slot-Accessor
(Symbol Pointer)

Name (Symbol Pointer)

Parent Class (Class Pointer)

Write Slot-Accessor
(Symbol Pointer)

Number of Instances w/
Shared Slot (int)

Shared Value
(Data Object Pointer)

Default Value
(Expression Pointer)

Bitfields (all stored in 1 integer)

Default Specified (1 bit)

Cardinality Specified (1 bit)

Storage Specified (1 bit)

Access Specified (1 bit)

Shared (1 bit)

Multiple (1 bit)

Composite (1 bit)

No-Inherit (1 bit)

No Writes Allowed (1 bit)

Initialize-Only (1 bit)

Override Default (1 bit)

Dynamic Default Value (1 bit)

Each slot descriptor is comprised of the following: a pointer to the class in which
this slot is directly defined, a symbolic name, a symbolic name of a read slot-accessor
of the form get-<slot-name>, a symbolic name of a write slot-accessor of the form
put-<slot-name>, a series of bitfields indicating the facets, an expression which
yields the default value for a slot when evaluated during a make-instance call, a
pointer to the data object holding the value of a shared slot at run-time and the
number of instances of referencing a shared slot. If a slot is not shared, the last two
fields will always be NULL and zero respectively. Local slot values are stored with the
instances (see the general notes in the Instance Commands Module). The count of the
number of instances sharing a slot is used to determine when to automatically initialize
or erase a shared slot.

The bitfields are stored in a single integer and indicate the following information
about a slot descriptor: whether a cardinality facet (single or multiple) was specified
in the defclass, whether a storage facet (shared or local) was specified in the
defclass, whether an access facet (read-write, read-only and initialize-only) was
specified in the defclass, whether a default value facet (default or default-dynamic)
was specified in the defclass, whether the default value (if any) is dynamic, whether
the slot has shared or local storage, whether the slot has single or multiple cardinality,

318 Class Commands Module

whether the slot gets facets exclusively from the direct parent class or compositely from
indirect superclasses as well, whether the slot is propagated to subclasses, whether
the slot can be written, whether the slot can be written only during initialization of an
instance and whether a slot has a default value override during a make-instance
call.

Handler Information

Hash-Value Sorted Handler Map (array of ints)

Handler Count (int)

Handler Array

•
 •

 •
•
 •

 •

The message-handler information for a class is comprised of: an array of handlers,
the number of handlers and an array of integer indices into the handler array which
gives the order of the handlers according to the hash value of their symbolic names.
The sorted handler map allows a handler to be found easily by performing a binary
search on the symbolic hash value of the handler name. For details on the
message-handler data structure, see the Message-Handler Commands Module.

GLOBAL VARIABLES

ObjectParseToken

PURPOSE: An intermediary variable used for scanned tokens by the
COOL parsing routines during a load.

INTERNAL VARIABLES

Defclass Constants

PURPOSE: The following are constants used in to determine when
qualifiers in the defclass construct are duplicated:
CARDINALITY_BIT, STORAGE_BIT, ACCESS_BIT ,
INHERIT_BIT and COMPOSITE_BIT.

OTHER NOTES: Implemented as preprocessor constants.

Defclass Keywords

PURPOSE: The following are keywords used in parsing a defclass:
SUPERCLASS_RLN , ABSTRACT_RLN,
CONCRETE_RLN, HANDLER_DECL , SLOT_RLN,
SLOT_DEF_RLN , SLOT_DEF_DYN_RLN ,
SLOT_NOINH_RLN , SLOT_INH_RLN ,
SLOT_RDONLY_RLN, SLOT_RDWRT_RLN,

CLIPS Architecture Manual 319

SLOT_SHARE_RLN , SLOT_LOCAL_RLN,
SLOT_MULT_RLN, SLOT_SGL_RLN ,
SLOT_INIT_RLN, SLOT_COMPOSITE_RLN and
SLOT_EXCLUSIVE_RLN .

OTHER NOTES: Implemented as preprocessor constants.

GLOBAL FUNCTIONS

BrowseClassesCmd

PURPOSE: Displays an inheritance "graph" of the subclasses of defclass
specified by the CLIPS supplied argument.

OTHER NOTES: Implementation of the CLIPS function browse-classes.

ClassHandlersCmd

PURPOSE: Groups the message-handler names of a class specified by
the CLIPS supplied argument into a multifield variable..

ARGUMENTS: A pointer to a data object to hold the resulting multifield.

OTHER NOTES: Implementation of the CLIPS function
class-message-handlers.

ClassHasHandler

PURPOSE: Determines if a message-handler is present in a class. Both
arguments are supplied by CLIPS.

RETURNS: A non-zero integer if the message-handler is present in the
class, zero otherwise.

OTHER NOTES: Implementation of the CLIPS function
class-message-handler-existp.

ClassHasSlot

PURPOSE: Determines if a slot is present in a class. Both arguments are
supplied by CLIPS.

RETURNS: A non-zero integer if the slot is present in the class, zero
otherwise.

OTHER NOTES: Implementation of the CLIPS function class-slot-existp.

320 Class Commands Module

ClassSlotsCmd

PURPOSE: Groups the slot names of a class specified by the CLIPS
supplied argument into a multifield variable.

ARGUMENTS: A pointer to a data object to hold the resulting multifield.

OTHER NOTES: Implementation of the CLIPS function class-slots.

ClassSubclassesCmd

PURPOSE: Groups the subclass names of a class specified by the
CLIPS supplied argument into a multifield variable.

OTHER NOTES: Implementation of the CLIPS function class-subclasses.

ClassSuperclassesCmd

PURPOSE: Groups the superclass names of a class specified by the
CLIPS supplied argument into a multifield variable.

ARGUMENTS: A pointer to a data object to hold the resulting multifield.

OTHER NOTES: Implementation of the CLIPS function
class-superclasses.

CmdListDefclasses

PURPOSE: Lists all the currently defined defclasses.

OTHER NOTES: Implementation of the CLIPS function list-defclasses.

CmdUndefclass

PURPOSE: Removes a defclass as well as any subclasses and
associated instances and message-handlers.

OTHER NOTES: Implementation of the CLIPS function undefclass.

DescribeClassCmd

PURPOSE: Displays the detailed information about the defclass
specified by the CLIPS supplied argument.

OTHER NOTES: Implementation of the CLIPS function describe-class.

CLIPS Architecture Manual 321

DoesClassExist

PURPOSE: Determines if a class specified by the CLIPS supplied
argument exists.

RETURNS: A non-zero integer if the class exists, zero otherwise.

OTHER NOTES: Implementation of the CLIPS function class-existp.

Embedded Access for Defclasses

PURPOSE: The following functions are provided for embedded access
and are documented in the Advanced Programming Guide:
BrowseClass, DeleteDefclass, DescribeClass,
FindDefclass, GetClassMessageHandlers,
GetClassSlots, GetClassSubclasses,
GetClassSuperclasses, GetDefclassName,
GetDefclassPPForm, GetNextDefclass,
GetSlotFacets, GetSlotSources, IsClassAbstract,
IsDefclassDeletable and ListDefclasses.

HasSuperclass

PURPOSE: Determines is a class is a subclass of a second class.

ARGUMENTS: Pointers to two defclasses.

RETURNS: A non-zero integer if the first class is a subclass of the
second class, zero otherwise.

OTHER NOTES Support routine for superclass and subclass determinant
routines in the Class Commands, Generic Function
Commands and Generic Function Functions Modules.

IsClassAbstractCmd

PURPOSE: Determines if direct instances of a class specified by the
CLIPS supplied argument can be made.

RETURNS: The integer zero if the class is abstract, non-zero otherwise.

OTHER NOTES: Implementation of the CLIPS function class-abstractp.

IsSubclass

PURPOSE: Determines if a class is a subclass of a second class. Both
arguments are supplied by CLIPS.

322 Class Commands Module

RETURNS: A non-zero integer if the first class is a subclass of the
second class, zero otherwise.

OTHER NOTES: Implementation of the CLIPS function subclassp.

IsSuperclass

PURPOSE: Determines if a class is a superclass of a second class. Both
arguments are supplied by CLIPS.

RETURNS: A non-zero integer if the first class is a superclass of the
second class, zero otherwise.

OTHER NOTES: Implementation of the CLIPS function superclassp.

ObjectsRunTimeInitialize

PURPOSE: Initializes COOL constructs in a run-time image.

ARGUMENTS: 1) Pointer to new class list.
2) Pointer to new definstances list.
3) Pointer to new class hash table.

PPDefclass

PURPOSE: Displays the pretty-print form of the defclass specified by the
CLIPS supplied argument.

OTHER NOTES: Implementation of the CLIPS function ppdefclass.

SetupClasses

PURPOSE: Defines all functions and commands for the defclass
construct. Sets up all necessary load, clear, save, watch,
constructs-to-c and bload/bsave interfaces.

OTHER NOTES: Initialization differs between standard and run-time
configurations.

SetupObjectSystem

PURPOSE: Initializes all COOL constructs, functions and data structures.

SlotFacetsCmd

PURPOSE: Groups the facet names of a class slot specified by the
CLIPS supplied arguments into a multifield variable.

ARGUMENTS: A pointer to a data object to hold the resulting multifield.

CLIPS Architecture Manual 323

OTHER NOTES: Implementation of the CLIPS function slot-facets.

SlotSourcesCmd

PURPOSE: Groups the source class names of a class slot specified by
the CLIPS supplied arguments into a multifield variable.

ARGUMENTS: A pointer to a data object to hold the resulting multifield.

OTHER NOTES: Implementation of the CLIPS function slot-sources.

INTERNAL FUNCTIONS

CheckClass

PURPOSE: Support routine for PPDefclass and DescribeClassCmd
which verifies the existence of a class.

ARGUMENTS: 1) The name of the calling function.
2) The name of the class.

RETURNS: A pointer to the class, NULL on errors.

CheckClassAndSlot

PURPOSE: Support routine for ClassHasSlot, SlotFacetsCmd and
SlotSourcesCmd which parses a class name and a slot
name.

ARGUMENTS: 1) The name of the calling function.
2) A buffer for the class pointer.

RETURNS: The symbolic name of the slot, NULL on errors.

CheckTwoClasses

PURPOSE: Support routine for IsSuperclass and IsSubclass which
parses two class arguments.

ARGUMENTS: 1) The name of the calling function.
2) A buffer for the first class pointer.
3) A buffer for the second class pointer.

RETURNS: A non-zero integer if both classes successfully parsed, zero
otherwise.

324 Class Commands Module

ClassInfoFnxArgs

PURPOSE: Support routine for ClassSlotsCmd,
ClassSuperclassesCmd, ClassSubclassesCmd and
ClassHandlersCmd which checks the class argument.

ARGUMENTS: 1) Name of the calling function.
2) Data object buffer (which is initialized to the symbol
FALSE)
3) A buffer for an integer flag indicating if the keyword
"inherit" was present in the function call.

RETURNS: A pointer to the class, NULL on errors.

CountSubclasses

PURPOSE: Support routine for GetClassSubclasses which counts
the number of subclasses for a class.

ARGUMENTS: 1) A pointer to a class.
2) An integer flag indicating whether to include (one) or
exclude (zero) indirectly inherited subclasses.
3) A unique traversal integer identifier to prevent loops when
examining the class hierarchy (see the general notes for the
Class Commands Module)

RETURNS: The number of direct or indirect subclasses (depending on
the second argument).

DisplayHandlersInLinks

PURPOSE: Support routine for DescribeClass which displays the
message-handlers for a list of classes.

ARGUMENTS: A list of classes.

RETURNS: A non-zero integer if any message-handlers were listed,
zero otherwise.

EvaluateDefaultSlots

PURPOSE: Support routine for ParseDefclass which evaluates the
default value expressions for class slots and converts them
to constant expressions.

ARGUMENTS: A pointer to the class.

RETURNS: A non-zero integer if there are no errors, zero otherwise.

CLIPS Architecture Manual 325

GetClassName

PURPOSE: Support routine for CmdUndefclass, PPDefclass and
DescribeClassCmd which parses a class name.

ARGUMENTS: The name of the calling function.

RETURNS: The name of the class, NULL on errors.

ParseDefclass

PURPOSE: Used by the load command to parse a defclass.

ARGUMENTS: The logical name of the input source.

RETURNS: The integer zero if there are no parsing errors, non-zero
otherwise.

ParseDefclassName

PURPOSE: Support routine for ParseDefclass which parses a
defclass name and optional comment.

ARGUMENTS: The logical name of the input source.

RETURNS: A pointer to the symbolic name of the new class, NULL on
errors.

ParseSlot

PURPOSE: Support routine for ParseDefclass which parses slots of a
new class.

ARGUMENTS: 1) The logical name of the input source.
2) A pointer to the current list of slots.

RETURNS: A pointer to the new list of slots, NULL on errors.

ParseSlotValue

PURPOSE: Support routine for ParseSlot which parses the value
expression for a new slot.

ARGUMENTS: 1) The logical name of the input source.
2) A buffer for an error boolean flag.

RETURNS: An pointer to an expression.

326 Class Commands Module

ParseSuperclasses

PURPOSE: Support routine for ParseDefclass which parses the direct
superclass list of a new class.

ARGUMENTS: 1) The logical name of the input source.
2) The symbolic name of the new class.

RETURNS: A pointer to a list of classes, NULL on errors.

PrintClassBrowse

PURPOSE: Support routine for BrowseClass which displays the
subclasses of a specified class.

ARGUMENTS: 1) A pointer to the root class from which to start the graph.
2) The depth in the graph from the base class.

PurgeUserClassStuff

PURPOSE: Used by the clear command to remove all currently defined
defclasses anc their instances.

OTHER NOTES: Defclasses are removed after defmethods but before
defgenerics because methods can refer to classes but
classes can refer to generic functions. The use of priorities in
AddClearFunction accomplishes this ordering.

SaveDefclasses

PURPOSE: Used by the save command to write out the pretty-print
forms of all the currently defined defclasses.

ARGUMENTS: The logical name of the output destination.

StoreSubclasses

PURPOSE: Support routine for GetClassSubclasses which stores the
subclasses of a class in a multifield.

ARGUMENTS: 1) A multifield buffer to store the subclass names.
2) An index into the multifield buffer indicating where to start
the storage of subclass names.
3) A pointer to a class.
4) An integer flag indicating whether to include (one) or
exclude (zero) indirectly inherited subclasses.
5) A unique traversal integer identifier to prevent loops when
examining the class hierarchy (see the general notes for the
Class Commands Module)

CLIPS Architecture Manual 327

RETURNS: The number of direct or indirect subclasses stored in the
multifield (depending on the second argument).

328 Class Commands Module

Class Functions Module

The Class Functions Module (classfun.c) handles all the internal manipulations of
classes including the construction of class precedence lists from multiple inheritance.
For a description of the defclass construct, see the Basic Programming Guide. The
defclass construct capability, along with the other features of the CLIPS
Object-Oriented Language (COOL), can be removed by using the appropriate compile
flag in the setup header file.

Hash-Value Order Offset (int)

Slot (Slot Descriptor Pointer)

Hash-Value Order Link (TIS Link Pointer)

Inheritance Order Link (TIS Link Pointer)

Temporary Instance
Slot Link

Temporary Instance Slot Link is an intermediary data structure used to create
a template of all the slots which will be present in instances of a class, including slots
directly inherited from the class and indirectly inherited from superclasses.
FormInstanceTemplate calls MergeSlots for each class in the precedence list to
make a list of these temporary slot links. Once the list is complete, the list is converted
into the contiguous arrays described in the Class and Instance Commands Modules
and then destroyed. The fields of a slot link are: a slot descriptor pointer, an integer
index into the inheritance order of the slots (used only when creating the contiguous
hash-value map), a link chaining the slots together in order according to increasing
hash value of the slot name symbols and a link chaining the slots together in order
according to least specific to most specific inheritance.

Partial Order Link

Class (Class Pointer)

Next Link (PO Link Pointer)

Successor Classes (PO Link Pointer)

Partial Order Link is an intermediary data structure used to build the class
precedence list for a class from the multiple inheritance rules given in the Basic
Programming Guide. A partial order for two classes is an assertion that class A must
come before or after class B. The multiple inheritance rules are recursively applied to
the direct superclasses of a new class to generate a set of partial order links called the
partial order table. These partial orders are then topologically sorted according to the
algorithm given later in this section to generate the final class precedence list. A partial
order table node is comprised of a pointer to a class indicating how many classes (of
the ones in the table) must precede that class, and a list of classes which must
succeed that class. Specifically, the fields of a partial order link are: a pointer to a class

CLIPS Architecture Manual 329

(the predecessor count is stored with class), a link to the next unrelated partial order
and a link to the successor partial orders for this class.

The precedence determination and cycle detection algorithms are adapted from
the topological sorting algorithms given in The Art of Computer Programming - Vol. I
(Fundamental Algorithms) by Donald Knuth.

Each class and its direct superclasses are recursively entered in order into a table
of partial orders. A class is only entered once. The order reflects a pre-order depth-first
recursive traversal of the classes direct superclass lists, and this order will be followed
as closely as possible to preserve the "family" heuristic when constructing the class
precedence list.

Attached to each node is a count indicating the number of classes which must
precede this class and a list of classes which must succeed this class. These
predecessor counts and successor lists indicate the partial orderings given by the
rules of multiple inheritance for the classes as given in the Basic Programming Guide.

Rules of Multiple Inheritance:

1. A class must precede all its superclasses.
2. A class determines the precedence of its direct superclasses.

For example, the following class definitions:

(defclass A (is-a USER))
(defclass B (is-a USER))
(defclass C (is-a A B))

would give the following partial orders:

Partial Order Reason
C < A Rule 1
C < B Rule 1
A < B Rule 2

B < USER Rule 1
A < USER Rule 1

USER < OBJECT Rule 1

Entering these partial orders into a table using partial order links would yield the
following (note that the predecessor count is actually stored in the defclass data
structure, not the partial order link):

330 Class Functions Module

Successor Link: NIL Successor Link: NIL

Class: C

Next Link:

Successor Link:

Predecessors: 0

Class: A

Next Link:

Successor Link:

Predecessors: 1

Class: USER

Next Link:

Successor Link:

Predecessors: 2

Class: OBJECT

Next Link:

Successor Link: NIL

Predecessors: 1

Class: B

Next Link: NIL

Successor Link:

Predecessors: 2

Class: A

Next Link:

Successor Link: NIL

Predecessors: N/A

Class: B

Next Link: NIL

Predecessors: N/A

Class: B

Next Link:

Successor Link: NIL

Predecessors: N/A

Class: USER

Next Link: NIL

Predecessors: N/A

Class: OBJECT

Next Link:

Successor Link: NIL

Predecessors: N/A

Class: USER

Next Link: NIL

Successor Link: NIL

Predecessors: N/A

To generate a precedence list for the class C, pick the first class (scanning from left
to right) with a predecessor count of 0, append it to the precedence list, and decrement
the counts of all its successors. Continue scanning for a zero from where the last scan
left off. If there are no classes left with a predecessor count of zero, then there is no
solution. The function PrintPartialOrderLoop implements a straightforward
algorithm to print out a cyclical dependency in the partial orders when an error is
detected.

If the algorithm were not concerned about preserving the "family" heuristic (i.e.
trying to match pre-order depth-first traversal as closely as possible), neither the order
in which the classes were entered into the table nor the order in which the table was
scanned for classes with predecessor counts of zero would matter. Picking only
classes which have a predecessor count of zero guarantees a solution (if it exists) that
satisfies the two multiple inheritance rules. The modifications to Knuth's algorithm
allow the additional heuristic to be observed.

The following diagrams show the partial order table after each class is entered onto
the precedence list:

Precedence List so far: C

Successor Link: NIL

Class: A

Next Link:

Successor Link:

Predecessors: 0

Class: USER

Next Link:

Successor Link:

Predecessors: 2

Class: OBJECT

Next Link:

Successor Link: NIL

Predecessors: 1

Class: B

Next Link: NIL

Successor Link:

Predecessors: 1

Class: B

Next Link:

Successor Link: NIL

Predecessors: N/A

Class: USER

Next Link: NIL

Predecessors: N/A

Class: OBJECT

Next Link:

Successor Link: NIL

Predecessors: N/A

Class: USER

Next Link: NIL

Successor Link: NIL

Predecessors: N/A

Precedence List so far: C A

CLIPS Architecture Manual 331

Class: USER

Next Link:

Successor Link:

Predecessors: 1

Class: OBJECT

Next Link:

Successor Link: NIL

Predecessors: 1

Class: B

Next Link: NIL

Successor Link:

Predecessors: 0

Class: OBJECT

Next Link:

Successor Link: NIL

Predecessors: N/A

Class: USER

Next Link: NIL

Successor Link: NIL

Predecessors: N/A

Precedence List so far: C A B

Class: USER

Next Link:

Successor Link:

Predecessors: 0

Class: OBJECT

Next Link: NIL

Successor Link: NIL

Predecessors: 1

Class: OBJECT

Next Link:

Successor Link: NIL

Predecessors: N/A

Precedence List so far: C A B USER

Class: OBJECT

Next Link: NIL

Successor Link: NIL

Predecessors: 0

Final Precedence List: C A B USER OBJECT

GLOBAL VARIABLES

ClassList

PURPOSE: A pointer to the first node in the list of all currently defined
defclasses.

OTHER NOTES: The primitive CLIPS type classes come first in this list
according to the integer codes in constant.h. For example,
the codes for FLOAT and INTEGER are 0 and 1, thus those
classes come first and second on the list respectively. The
purpose of this ordering is to make the binary save files
identical for generic functions whether or not COOL is
installed (see the Generic Functions Binary Load/Save
Interface Module for more details).

The order of primitive type classes in PrimitiveClassMap is a
mirror image of this mapping.

332 Class Functions Module

ClassTable

PURPOSE: An array of class lists where each class in a particular list
has the same hash value. This data structure enables fast
lookups of classes by name. The class name is hashed to
generate a hash value. and then compared to the names of
all the classes in the chain at the hash value index of the
class table.

CLASS_TABLE_HASH_SIZE

PURPOSE: The number of chains in the class lookup table. A chain is a
list of classes where the name of each class generates the
same hash value according to the formula in HashClass.

OTHER NOTES: Implemented as a preprocessor constant in classfun.h.

OBJECT_CLASS_STRING

PURPOSE: The name of the root class of all classes in COOL; this class
has no superclasses.

OTHER NOTES: Implemented as a preprocessor constant in classfun.h.

PrimitiveClassMap

PURPOSE: An array of class pointers for the basic CLIPS primitive types
where the position of the array corresponds to the integer
code of the type found in constant.h. For example, the
pointer to the EXTERNAL-ADDRESS class is found in
PrimitiveClassMap[5] since the code for
EXTERNAL-ADDRESS is 5.

OTHER NOTES: The order of primitive type classes in ClassList is a mirror
image of this mapping.

USER_CLASS_STRING

PURPOSE: The name of the base class of user-defined classes; this
class has all the predefined message-handlers attached to it.

OTHER NOTES: Implemented as a preprocessor constant in classfun.h.

CLIPS Architecture Manual 333

INTERNAL VARIABLES

BIG_PRIME

PURPOSE: Large prime number used in the calculations of widely
distributed hash values for classes.

OTHER NOTES: Implemented as a preprocessor constant.

ClassListBottom

PURPOSE: A pointer to the last node in the list of all currently defined
defclasses.

Instance Template Codes

PURPOSE: Integer codes used by the function MergeSlots to indicate
that a list of slots are being inherited by a new class from a
direct (DIRECT) or indirect (INDIRECT) superclass.

OTHER NOTES: Used in connection with the no-inherit facet for a slot.

Implemented as preprocessors constants.

GLOBAL FUNCTIONS

AddClass

PURPOSE: Support routine for ParseDefclass in the Class
Commands Module which inserts a new class into the global
list and hash table and deletes an old definition, if
necessary.

ARGUMENTS: A pointer to a new class.

OTHER NOTES: For a class redefinition, old message-handlers which do not
conflict with new slot-accessors are reattached to the new
class.

ClassExistError

PURPOSE: Prints out an error message when a class cannot be found
for various functions.

ARGUMENTS: 1) The name of the calling function.
2) The name of the non-existent class.

334 Class Functions Module

ClearDefclasses

PURPOSE: Deletes all user-defined classes and message-handlers.

ARGUMENTS: An integer code indicating whether to ignore (zero) or delete
(non-zero) user-defined message-handlers attached to
system classes.

RETURNS: A non-zero integer if all user-defined classes and
message-handlers are deleted, zero otherwise.

OTHER NOTES: Classes which is in use will not be deleted.

DeleteClassLinks

PURPOSE: Support routine for ParseDefclass in the Class
Commands Module which deallocates a temporary set of
links forming a list of classes.

ARGUMENTS: A pointer to a class link node.

DeleteClassUAG

PURPOSE: Removes a class and all its subclasses.

ARGUMENTS: A pointer to a class.

RETURNS: A non-zero integer if the class and its subclasses, including
associated message-handlers, are deleted, zero otherwise.

OTHER NOTES: A class which is in use will not be deleted.

DeleteSlots

PURPOSE: Support routine for ParseDefclass in the Class Command
Module which deletes a list of slots.

ARGUMENTS: The list of slots.

OTHER NOTES: The "shared value" data object field of the slots is temporarily
used as a "next" pointer to chain together slots in the list.

FindClassSlot

PURPOSE: Determines the address of a specified class slot.

ARGUMENTS: 1) A pointer to a class.
2) A symbolic slot name.

CLIPS Architecture Manual 335

RETURNS: A pointer to a class slot.

FindDefclassBySymbol

PURPOSE: Determines the address of a specified class.

ARGUMENTS: A pointer to a symbol.

RETURNS: A pointer to a class.

FindPrecedenceList

PURPOSE: Support routine for ParseDefclass in the Class
Commands Module which determines the class precedence
list for a new class using the multiple inheritance rules
explained in Section 9.3.1.1 of the Basic Programming
Guide. Using these rules, partial orders between the
superclasses of the new class are generated. A topological
sort is used to establish a linear ordering of all the
superclasses from the partial orders; this ordering is referred
to as the class precedence list. The algorithm is explained in
detail in the general notes for the Class Functions Module.

ARGUMENTS: 1) A pointer to the old class for which the precedence list is
being redefined (NULL if this is a new class).
2) A list of direct superclasses.

RETURNS: A list of classes forming the precedence list, or NULL on
errors.

InitializeClasses

PURPOSE: Allocates and initializes class hash table and creates system
classes.

InsertSlot

PURPOSE: Support routine for ParseDefclass in the Class
Commands Module which inserts a new slot into the list of
slots for a new class and verifies that it is not a duplicate.

ARGUMENTS: 1)The top of the slot list.
2) A pointer to a slot.

RETURNS: The top of the slot list.

OTHER NOTES: The "shared value" data object field of the slots is temporarily
used as a "next" pointer to chain together slots in the list.

336 Class Functions Module

InstancesPurge

PURPOSE: Removes all instances of user-defined classes.

IsClassBeingUsed

PURPOSE: Recursively checks to see if a class or any of its subclasses
are in use.

ARGUMENTS: A pointer to a class.

RETURNS: A non-zero integer if the class or any of its subclasses is
busy, zero otherwise.

IsSystemClassName

PURPOSE: Support routine for ParseDefclass in the Class
Commands Module which determines if a name matches
that of one of the predefined system classes.

ARGUMENTS: The symbolic name of a class.

RETURNS: A non-zero integer if the name matches a system class
name, zero otherwise.

NewClass

PURPOSE: Allocates and initializes a new class.

RETURNS: A pointer to an initialized class.

OTHER NOTES: A traversal id map of size TRAVERSAL_BYTES (see the
Instance-Set Queries Module) is allocated for the class.

NewSlot

PURPOSE: Allocates and initializes a new slot.

ARGUMENTS: The symbolic slot name.

RETURNS: A pointer to a new slot.

OTHER NOTES: Creates two new symbols called "get-"<slot-name> and "put-
"<slot-name> and initializes the "related symbol" fields of
these symbols to point to the original slot name. This is to
help with fast lookup of implicit slot accessor
message-handlers during a message dispatch (see the
Message Functions Module).

CLIPS Architecture Manual 337

ObjectSystemPurge

PURPOSE: Removes all definstances and user-defined classes and
associated instances.

PackSlots

PURPOSE: Support routine for ParseDefclass in the Class
Commands Module which packs a list of slots into a
contiguous array for easy reference.

ARGUMENTS: 1) A pointer to the class.
2) A list of slots.

PutClassInTable

PURPOSE: Inserts a class into the class hash table.

ARGUMENTS: A pointer to a class.

ReinitializeClasses

PURPOSE: Initializes (but does not allocate) class hash table and
creates system classes.

SetClassList

PURPOSE: Initializes the global variables ClassList and
ClassListBottom to point to the top and bottom
respectively of the given list of classes.

ARGUMENTS: A pointer to the top of a list of classes.

OTHER NOTES: This function is used only in a run-time version of CLIPS.

INTERNAL FUNCTIONS

AddSystemClass

PURPOSE: Support routine for CreateSystemClasses which
allocates and initializes a new system class and inserts into
the class hash table.

ARGUMENTS: 1) The name of the class.
2) The CLIPS type integer code found in constant.h which
corresponds to this class (any value if this does not apply,
e.g. the USER class).
3) An integer flag indicating if the new class corresponds to a

338 Class Functions Module

CLIPS primitive type (1) or not (0).
4) A pointer to the parent class , or NULL if there is none.

RETURNS: A pointer to a class.

OTHER NOTES: This function assumes simple single inheritance for the
system classes and builds class precedence lists
accordingly.

AddToClassList

PURPOSE: Support routine for CreateSystemClasses which adds a
class to the end of the global class list.

ARGUMENTS: A pointer to the class.

BuildPartialOrders

PURPOSE: Support routine for FindPrecedenceList which builds a
table of the partial orders between the superclasses of a
new class based on the multiple inheritance rules and
"family" heuristic specified in section 9.3.1.1 of the Basic
Programming Guide. See the general notes for the Class
Functions Module for more details.

ARGUMENTS: 1) The partial order table, which is a series of partial order
links (see the general notes).
2) The list of superclasses.

RETURNS: The partial order table.

OTHER NOTES: If a class is being redefined, the Multiple Inheritance Rule 1
partial orders between the class and its direct superclasses
will have already been recorded in the table prior to the
calling of this function. Otherwise, the partial order table will
be empty. This is done to prevent cyclical dependencies.

BuildSubclassLinks

PURPOSE: Support routine for AddClass which attaches subclass links
from each superclass of a class to itself.

ARGUMENTS: A pointer to a class.

CopyClassLinks

PURPOSE: Support routine for AddSystemClass which copies a list of
classes to aid in creating the class precedence list for a new
system class.

CLIPS Architecture Manual 339

ARGUMENTS: A list of classes.

CreateSystemClasses

PURPOSE: Creates the predefined system classes and adds them to the
global class list and hash table.

OTHER NOTES: The order in which the system classes are defined is
important. See the notes on the Class Functions Module
global variables ClassList and PrimitiveClassMap.

DeleteClass

PURPOSE: Support routine for ObjectSystemPurge,
ClearDefclasses and DeleteClassUAG which deinstalls
(see InstallClass) and deallocates a class and its
message-handlers.

ARGUMENTS: A pointer to a class.

RETURNS: A non-zero integer if the class was successfully deleted, zero
otherwise.

OTHER NOTES: This routine will fail if there are any outstanding references to
the class (e.g. instances or subclasses still exist).

DeleteSublink

PURPOSE: Support routine for DeleteClass which removes the
subclass link to a class from one of its superclasses.

ARGUMENTS: 1) A pointer to the superclass.
2) A pointer to the subclass.

FormInstanceTemplate

PURPOSE: Support routine for AddClass which creates a template of
all the slots which will be present in instances of a class,
including slots directly inherited from the class and indirectly
inherited from superclasses. This template is a contiguous
array of class slot pointers sorted by inheritance from least
specific to most specific (slots from the same class are in the
order they appeared in the defclass). This ordering is used
when listing slot information about the class. This data
structure is explained in detail in the Class and Instance
Commands Modules. All direct instances of a class share the
same instance template; each instance only needs to have
its own array of slot values.

340 Class Functions Module

ARGUMENTS: A pointer to the class.

OTHER NOTES: This routine also creates a map of integer indices into the
instance template which gives the order according to the
hash values of the symbolic names of the slots. Thus, slots
for an instance can be easily found by performing a binary
search on the symbolic hash value of the slot name.

Temporary instance slot links are used as an intermediary
data structure.

HashClass

PURPOSE: Generates an index into the class hash table for a given
class.

ARGUMENTS: The symbolic name of a class.

RETURNS: The hash table index for the class.

OTHER NOTES: The hash table index is derived from the symbol hash table
index (see the Symbol Manager Module).

InstallClass

PURPOSE: Support routine for AddClass and DeleteClass which
increments or decrements the "in use" counts of all atoms
(e.g. symbols) and construct references (e.g. deffunction
calls) found in the definitions of a class and its associated
message-handlers. This insures that all of these items
persist at least as long as the class definition does.

ARGUMENTS: 1) A pointer to a class.
2) An integer code indicating whether to increment (1) or
decrement (0) "in use" counts.

OTHER NOTES: Only deinstallation of message-handlers is performed by this
routine; installation is done by
ParseDefmessageHandler in the Message Commands
Module.

MergeSlots

PURPOSE: Support routine for FormInstanceTemplate which
appends slots from a class to a temporary list of slots
inherited from more specific classes. Only slots which have
not already been specified will be added, and slots with
no-inherit facets will only be added from the direct parent
class, not indirect superclasses.

CLIPS Architecture Manual 341

ARGUMENTS: 1) The current list of temporary slot links.
2) A pointer to a class with the new slots.
3) Buffer for the number of slots in the list.
4) An integer flag indicating if the new slots to be added are
from the direct parent class (1) or not (0).
5) Buffer for holding the top of the list according to most
specific order by inheritance.

RETURNS: The new list of temporary instance slot links.

OTHER NOTES: The temporary link data structure uses a "next" field for
indicating the symbolic hash value order and an "inherit"
field for indicating the most specific inheritance order.

PrintPartialOrderLoop

PURPOSE: Support routine for FindPrecedenceList which prints a
dependency loop in the partial orders when a precedence
list cannot be found which satisfies the multiple inheritance
rules. Details are given in the general notes.

ARGUMENTS: The table of partial orders.

OTHER NOTES: There may be more than one dependency loop between the
partial orders, but this routine will only print the first one it
finds.

RecordPartialOrder

PURPOSE: Support routine for FindPrecedenceList and
BuildPartialOrders which enters a partial order between
two classes into the partial order table, e.g. class A has
precedence over class B. According to the topological
sorting algorithm given in the Class Function Module's
general notes, the successor class is entered on the
predecessor class's successor list, and the successor class's
predecessor count is incremented.

ARGUMENTS: 1) A partial order link node containing a pointer to the
predecessor class.
2) The successor class.

ResetCompositeSlots

PURPOSE: Support routine for AddClass which gets facet values for
composite slots in a new class from its superclasses. See
the Basic Programming Guide for details on the composite
slot facet.

342 Class Functions Module

ARGUMENTS: A pointer to a class.

OTHER NOTES: Since all superclasses are completely defined before a new
class based on them is created, this routine need only
examine the immediately next most specific class in the
class precedence list for extra facet values. Even if the
superclass slot is also composite, the other facets have
already been filtered down from the more general
superclasses. However, if the superclass slot has a
no-inherit facet, the next most specific class must be
examined.

CLIPS Architecture Manual 343

Instance Commands Module

The Instance Commands Module (inscom.c) manages the parsing and general
interface aspects for instances of user-defined classes. For a description of how to
manipulate instances, see the Basic Programming Guide.

Bitfields

Busy Count (int)

Hash Value (int)

Name (Symbol Pointer)

Instance List, Class and
Hash Table Links

Class (Class Pointer)

Evaluation Depth (int)

Instance Slot Array

The internal data structure of an
instance consists primarily of: a
symbolic name, a pointer to the class
(see the Class Commands Module for
details on the defclass construct) and
an array of slot values corresponding
one to one with the instance template
array in the class. A busy count for
each instance reflects how many
outstanding pointer references there
are to an instance. This busy count
must be zero it is safe to deallocate
the instance. Note that the instance
may appear to be deleted while the
busy count is greater than zero, for it
might be on the garbage collection list
(see the notes in the Instance
Functions Module).

Other fields in the instance structure include: a hash value indicating the position of
the instance in the hash table; the evaluation depth at which the instance was created
(see the Evaluation Module), which is used in determining when it is safe to garbage
collect an instance; a series of bitfields indicating such things as whether the instance
is on the garbage list; and links connecting the instance to the global instance list and
hash table.

Bitfields Garbage (1 bit)

•
 •

 •
•
 •

 •

Installed (1 bit)

Being initialized (1 bit)

The bitfields are stored in a single integer and indicate the following information about
an instance: whether all the atoms within the instance have had their busy counts
incremented (i.e. whether the instance has been installed), whether the instance has
been functionally deleted (i.e. the instance on the garbage list) and whether the
instance is in the process of being initialized by make-instance or
initialize-instance.

CLIPS Architecture Manual 345

Instance List, Class and
Hash Table Links

Previous-in-Hash Table
(Instance Pointer)

Next-in-Instance-List (Instance Pointer)

Previous-in-Instance-List
(Instance Pointer)•

 •
 •

•
 •

 •

Next-in-Hash Table (Instance Pointer)

Previous-in-Class-Instance-List
(Instance Pointer)

Previous-in-Class-Instance-List
(Instance Pointer)

The links which place an instance in the global instance list (InstanceList), the
instance hash table (InstanceTable) and the list of instances for the parent class are
implemented with direct instance pointers in the instance.

Instance Slot

Local Value (Data Object Pointer)

•
 •

 •
•
 •

 •

Class Slot (Slot Descriptor Pointer)

Initial Value Expression
(Expression Pointer)

Slot Value Address
(Data Object Pointer Pointer)

Each instance has an array of instance slots that correspond one to one with the
template of slot descriptor pointers in the instance's class. In this way, slot information
which is common to all instances of a class, such as the slot name and facets, is only
stored once. The mapping is one to one so that an instance slot may be accessed by
looking it up by name in the class template and then using the same index to reference
the instance slot array. The instance slots contain information about slots which are
specific to each instance.

An instance slot contains the following fields: a pointer to the slot descriptor giving
the name and facets; a data object buffer holding the slot value, if the slot is local; an
expression for the initial value of a slot used during make-instance and
initialize-instance; and a pointer to the data object buffer holding the slot value.
This last field will point to the local value field if the slot is not a shared slot.
Otherwise, it will point to the shared value field in the slot descriptor of the class. This
field is used to access the slot value indirectly COOL routines to avoid repetitive
checks as to whether the slot is shared or not.

346 Instance Commands Module

INTERNAL VARIABLES

ALL_QUALIFIER

PURPOSE: Keyword which tells CmdListInstances to list indirect
instances of a class.

OTHER NOTES: Implemented as a preprocessor constant.

CLASS_RLN

PURPOSE: Keyword in instance creation routines
ParseInitializeInstance and ParseSimpleInstance
indicating that a class name follows.

OTHER NOTES: Implemented as a preprocessor constant.

ObjectParseToken

PURPOSE: An intermediary variable used for scanned tokens by the
COOL parsing routines during a load.

GLOBAL FUNCTIONS

CmdListInstances

PURPOSE: Lists instances of a class.

OTHER NOTES: Implementation of the CLIPS function instances.

DeleteInstance

PURPOSE: Deletes the active instance, i.e. the instance which is the
object of the current message.

OTHER NOTES: Implementation of the CLIPS function delete-instance.

DestroyAllInstances

PURPOSE: Sends delete messages to all instances.

DoesInstanceExist

PURPOSE: Determines if the instance specified by the instance name or
address in the CLIPS supplied argument exists.

RETURNS: A non-zero integer if the instance exists, zero otherwise.

CLIPS Architecture Manual 347

OTHER NOTES: Implementation of the CLIPS function instance-existp.

DoesSlotExist

PURPOSE: Determines if a slot of a particular instance, specified by
CLIPS supplied arguments, exists.

RETURNS: A non-zero integer if the slot exists, zero otherwise.

OTHER NOTES: Implementation of the CLIPS function slot-existp.

Embedded Access for Instances

PURPOSE: The following functions are provided for embedded access
and are documented in the Advanced Programming Guide:
CLIPSDeleteInstance, CLIPSGetSlot,
CLIPSMakeInstance, CLIPSPutSlot, CLIPSTestSlot,
CLIPSUnmakeInstance, CreateRawInstance,
FindInstance, GetInstanceName, GetInstanceClass,
GetInstancePPForm, GetNextInstance,
GetNextInstanceInClass ListInstances,
LoadInstances, SaveInstances and
ValidInstanceAddress.

OTHER NOTES: There are additional embedded access functions for
instances in the Instances Functions Module.

GetInstanceAddressCmd

PURPOSE: Determines the address of an instance specified by a CLIPS
supplied argument.

ARGUMENTS: A data object buffer to hold the instance address.

OTHER NOTES: Implementation of the CLIPS function instance-address.

GetInstanceClassCmd

PURPOSE: Determines the class of an instance specified by a CLIPS
supplied argument.

ARGUMENTS: A data object buffer to hold the class name.

OTHER NOTES: Implementation of the CLIPS functions class and type (see
the Generic Function Command Module).

348 Instance Commands Module

GetInstanceNameCmd

PURPOSE: Determines the name of an instance specified by a CLIPS
supplied argument.

ARGUMENTS: A data object buffer to hold the instance name.

OTHER NOTES: Implementation of the CLIPS function instance-name.

InstanceNameToSymbol

PURPOSE: Converts an instance name specified by a CLIPS supplied
argument to a symbol.

ARGUMENTS: A data object buffer for holding the symbol.

OTHER NOTES: Implementation of the CLIPS function
instance-name-to-symbol.

IsInstance

PURPOSE: Determines if the CLIPS supplied argument is an instance
name or address.

RETURNS: A non-zero integer if the argument is an instance, zero
otherwise.

OTHER NOTES: Implementation of the CLIPS function instancep.

IsInstanceAddress

PURPOSE: Determines if the CLIPS supplied argument is an instance
address.

RETURNS: A non-zero integer if the argument is an instance address,
zero otherwise.

OTHER NOTES: Implementation of the CLIPS function instance-addressp.

IsInstanceName

PURPOSE: Determines if the CLIPS supplied argument is an instance
name.

RETURNS: A non-zero integer if the argument is an instance name, zero
otherwise.

OTHER NOTES: Implementation of the CLIPS function instance-namep.

CLIPS Architecture Manual 349

IsSlotBound

PURPOSE: Determines if the slot of an instance, specified by CLIPS
supplied arguments, has a bound value.

RETURNS: A non-zero integer if the slot is bound, zero otherwise.

OTHER NOTES: Implementation of the CLIPS function slot-boundp.

IsSlotInitable

PURPOSE: Determines if the slot of an instance, specified by CLIPS
supplied arguments, can be initialized.

RETURNS: A non-zero integer if the slot can be initialized, zero
otherwise.

OTHER NOTES: Implementation of the CLIPS function slot-initablep.

IsSlotWritable

PURPOSE: Determines if the slot of an instance, specified by CLIPS
supplied arguments, can be written.

RETURNS: A non-zero integer if the slot can be written, zero otherwise.

OTHER NOTES: Implementation of the CLIPS function slot-writablep.

LoadInstancesCommand

PURPOSE: Loads instances from a file.

OTHER NOTES: Implementation of the CLIPS function load-instances.

MultifieldSlotDelete

PURPOSE: Deletes fields from a multifield slot value of an instance.

ARGUMENTS: A data object buffer to hold the symbol TRUE or FALSE
depending on the success of the deletion.

OTHER NOTES: Implementation of the CLIPS function mv-slot-delete.

MultifieldSlotInsert

PURPOSE: Inserts fields into a multifield slot value of an instance.

ARGUMENTS: A data object buffer to hold the symbol TRUE or FALSE
depending on the success of the insertion.

350 Instance Commands Module

OTHER NOTES: Implementation of the CLIPS function mv-slot-insert.

MultifieldSlotReplace

PURPOSE: Replaces fields in a multifield slot value of an instance.

ARGUMENTS: A data object buffer to hold the symbol TRUE or FALSE
depending on the success of the replacement.

OTHER NOTES: Implementation of the CLIPS function mv-slot-replace.

ParseInitializeInstance

PURPOSE: Parses initialize-instance and make-instance function
calls into a series of expressions that can later be evaluated
by InitializeInstance or MakeInstance in the Instance
Functions Module.

ARGUMENTS: 1) An expression node containing the initialize-instance
or make-instance function call.
2) The logical name of the input source.

RETURNS: The top of series of expressions representing the
initialize-instance or make-instance function call, or
NULL on errors.

OTHER NOTES: This special function parser is required because these two
functions do not follow the standard format of CLIPS
functions, e.g. the slot-overrides would look like function
calls to the standard CLIPS function parser.

(initialize-instance <instance> <slot-override>*) is
parsed to the following:

Instance
Expression

Slot value
Expression

Symbol
TRUE

• • •Slot name
Expression

NEXT-
ARG

NEXT-
ARG

A
R
G
-

L
IS

T

(make-instance <instance-name> of <class>
<slot-override>*) is parsed to the following:

CLIPS Architecture Manual 351

Instance name
Expression

Slot value
Expression

Symbol
TRUE

• • •Slot name
Expression

Class name
Expression

NEXT-
ARG

NEXT-
ARG

NEXT-
ARG

A
R
G
-

L
IS

T

PPInstance

PURPOSE: Displays the pretty-print form of an instance.

OTHER NOTES: Implementation of the CLIPS function ppinstance.

SaveInstancesCommand

PURPOSE: Saves instances to a file.

OTHER NOTES: Implementation of the CLIPS function save-instances.

SetupInstances

PURPOSE: Support routine for SetupObjectSystem in the Class
Commands Module which defines all functions and
commands for instances. Sets up all necessary watch and
garbage collection interfaces.

OTHER NOTES: Initialization differs between standard and run-time
configurations.

SymbolToInstanceName

PURPOSE: Converts a symbol specified by a CLIPS supplied argument
to an instance name.

ARGUMENTS: A data object buffer for holding the instance name.

OTHER NOTES: Implementation of the CLIPS function
symbol-to-instance-name.

UnmakeInstance

PURPOSE: Sends a delete message to the instance specified by the
CLIPS supplied argument.

OTHER NOTES: Implementation of the CLIPS function unmake-instance.

352 Instance Commands Module

INTERNAL FUNCTIONS

CheckInstanceAndSlot

PURPOSE: Support routine for DoesSlotExist, IsSlotBound,
IsSlotWritable and IsSlotInitable which determines the
the address of a slot of an instance, both given by CLIPS
supplied arguments.

ARGUMENTS: 1) The name of the calling function.
2) A buffer for holding the slot address (will contain NULL if
the slot does not exist).
3) An integer flag indicating whether to signal an error (0) if
the slot does not exists or not (1).

RETURNS: The address of the instance, NULL on errors.

CheckMultifieldSlotInstance

PURPOSE: Support routine for MultifieldSlotDelete,
MultifieldSlotInsert and MultifieldSlotReplace which
checks the number of arguments and determines the
address of the instance specified by the CLIPS supplied
argument.

ARGUMENTS: 1) Name of the calling function.
2) Integer code representing a restriction on the number of
arguments (EXACTLY, AT_LEAST, NO_MORE_THAN, etc.)
3) The expected number of arguments.

RETURNS: The address of the instance, NULL on errors.

FindISlotByName

PURPOSE: Support routine for CLIPSTestSlot, CLIPSGetSlot and
CLIPSPutSlot which determines the address of a named
slot.

ARGUMENTS: 1) The address of an instance.
2) The name of a slot.

RETURNS: The address of the instance slot, NULL on errors.

ParseSimpleInstance

PURPOSE: Support routine for LoadInstances and
CLIPSMakeInstance which parses a simple
make-instance call.

CLIPS Architecture Manual 353

ARGUMENTS: 1) An expression node containing the make-instance
function call.
2) The logical name of the input source.

RETURNS: The top of series of expressions representing the
make-instance function call, or NULL on errors.

OTHER NOTES: This routine is similar in functionality to
ParseInitializeInstance, except that it is always available
(even in a run-time or binary load only configuration). It is
more constraining than ParseInitializeInstance in that
the instance name, class name and the slot names and slot
values in slot-overrides must all be constant expressions.

ParseSlotOverrides

PURPOSE: Support routine for ParseInitializeInstance which parses
slot-overrides in an initialize-instance or
make-instance function call.

ARGUMENTS: 1) The logical name of the input source.
2) An integer buffer for holding a an error code: non-zero on
errors, zero otherwise.

RETURNS: A series of expressions representing the slot-overrides.

PrintInstance

PURPOSE: Support routine for PPInstance and
GetInstancePPForm which prints the name, class and slot
values of an instance.

ARGUMENTS: 1) Logical name of the output destination.
2) Address of the instance.
3) String to print between slots.

TabulateInstances

PURPOSE: Support routine for ListInstances which lists and counts all
the instances of a class.

ARGUMENTS: 1) A unique traversal integer identifier to prevent loops when
examining the class hierarchy (see the general notes for the
Class Commands Module)
2) The logical name of the output destination.
3) A pointer to a class.
4) An integer flag indicating whether to print indirect
instances of the class (1) or not (0).

354 Instance Commands Module

RETURNS: The number of instances listed.

CLIPS Architecture Manual 355

Instance Functions Module

The Instance Functions Module (insfun.c) deals with the internal details of creating,
accessing and deleting instances.

When an instance is deleted but its busy count is still greater than zero or its
creation evaluation depth is less than the current one, it is removed from its class's
instance list, the global instance list and hash table, and it is placed in a special
delayed garbage collection queue. An intermediary data structure is used to build this
garbage list:

Instance Garbage
Next Link (Instance Garbage Pointer)

Instance (Instance Pointer)

The first field is a pointer to the deleted instance, and the second is a pointer to the
next node in the garbage list. Whenever an instance is deleted, regardless of whether
it is busy or not, all of the internal data of the instance, such as the slot values, are
immediately deallocated. However, the external links of the instance are left intact so
that any outstanding internal references to the instance can still follow these links
without getting an unexpected pointer violation. CLIPS functions available to the user
will not be able to access this address anymore, even if the address was bound to a
CLIPS variable, because CLIPS recognizes that the instance no longer effectively
exists and treats references to it accordingly. This is accomplished through the use of
the "garbage" bitfield in the instance (see the notes in the Instance Commands
Module). At a later time, when garbage collection is performed and the instance is no
longer busy, the actual instance data structure will be deallocated. The Utility and
Evaluation Modules provide more details on CLIPS garbage collection.

GLOBAL VARIABLES

ChangesToInstances

PURPOSE: Internal flag used by the functions GetInstancesChanged
and SetInstancesChanged, which are documented in the
Advanced Programming Guide.

InstanceList

PURPOSE: A pointer to the top of the list of currently defined instances.

INSTANCE_TABLE_HASH_SIZE

PURPOSE: The number of chains in the instance lookup table. A chain is
a list of instances where the name of each instance
generates the same hash value according to the formula in
HashInstance.

CLIPS Architecture Manual 357

OTHER NOTES: Implemented as a preprocessor constant in insfun.h.

MaintainGarbageInstances

PURPOSE: When this global integer flag is non-zero, instances which
are on the garbage collection list cannot be deleted and any
newly deleted instances go onto the garbage collection list
regardless of whether they are busy or not. This flag is used
as a convenient mechanism by various instance
manipulation functions to insure that instance addresses
remain valid during a certain interval.

Multifield Slot Function Codes

PURPOSE: Integer codes used by CheckMultifieldSlotModify to
determine which function called it. The codes are: DELETE,
INSERT and REPLACE.

OTHER NOTES: Implemented as preprocessor constants in insfun.h.

OverrideSlotProtection

PURPOSE: When this integer flag is non-zero, slot protection such as
read-only and initialize-only facets are ignored during
slot writes. This flag is used by the LoadInstances function
in the Instance Commands Module to insure that instances
can be reloaded from a file exactly as they were saved.

Slot Value Expression
Evaluation Codes

PURPOSE: Integer codes used by EvaluateAndStoreInDataObject
to indicate the result of evaluating an expression for a slot
value: MULTI_CLEAR for a NIL value and MULTI_SET
for a non-NIL value.

OTHER NOTES: Implemented as preprocessor constants in insfun.h.

Slot Value Set Codes

PURPOSE: Integer codes used by PutSlotValue to indicate the result
of setting a slot: SLOT_EMPTY for clearing the slot,
SLOT_FILLED for setting the slot and SLOT_ERROR on
errors.

OTHER NOTES: Implemented as preprocessor constants in insfun.h.

358 Instance Functions Module

WatchInstances

PURPOSE: An integer flag indicating whether or not to print out trace
information whenever an instance is created or deleted. This
flag is used by the watch command.

WatchSlots

PURPOSE: An integer flag indicating whether or not to print out trace
information whenever a slot changes value. This flag is used
by the watch command.

WithinInit

PURPOSE: This integer flag is non-zero when an instance is being
initialized. This lets other COOL routines know when it is
permissible to write to slots which are protected by the
initialize-only facet.

INTERNAL VARIABLES

BIG_PRIME

PURPOSE: Large prime number used in the calculations of widely
distributed hash values for instances.

OTHER NOTES: Implemented as a preprocessor constant.

CurrentInstance

PURPOSE: A pointer to the instance which is currently being created.

InstanceGarbageList

PURPOSE: A pointer to the top of the list of instances which are
functionally deleted but still remain to be garbage collected.
Instances will remain on this list as long as their busy count
is non-zero; this to insure that there are no dangling pointers.

InstanceListBottom

PURPOSE: A pointer to the bottom of the list of currently defined
instances.

CLIPS Architecture Manual 359

InstanceTable

PURPOSE: An array of instance lists where each instance in a particular
list has the same hash value. This data structure enables fast
lookups of instances by name. The instance name is hashed
to generate a hash value. and then compared to the names
of all the instances in the chain at the hash value index of the
instance table.

GLOBAL FUNCTIONS

BuildInstance

PURPOSE: Support routine for CreateRawInstance in the Instance
Commands Module and MakeInstance which creates an
uninitialized instance and inserts it into the class's instance
list and the global instance list and hash table.

ARGUMENTS: 1) Symbolic name of the new instance.
2) Symbolic name of a class.

RETURNS: The address of the new instance, NULL on errors.

OTHER NOTES: If an instance of the specified name already exists, it is sent a
delete message. If the deletion fails, the new creation is
aborted.

CheckMultifieldSlotModify

PURPOSE: Support routine for the functions MultifieldSlotDelete,
MultifieldSlotInsert and MultifieldSlotReplace in the
Instance Commands Module and HandlerDeleteSlot,
HandlerInsertSlot and HandlerDeleteSlot in the
Message-Handler Commands Module which gets the slot
address, field range indices and new field values (if any) for
these functions.

ARGUMENTS: 1) A code indicating the type of operation (see Multifield
Slot Function Codes):
INSERT : Requires one index
REPLACE: Requires two indices
DELETE: Requires two indices
2) Name of the calling function.
3) Pointer to the instance being modified.
4) Argument expressions for the calling function.
5) Integer buffer for the range start index.
6) Integer buffer for the range end index (can be NULL if
argument #1 is INSERT).

360 Instance Functions Module

7) Data object buffer for the new value to be inserted or used
as a replacement (can be NULL if argument #1 is DELETE).

RETURNS: The address of the instance slot to modify, NULL on errors.

OTHER NOTES: A multifield value is allocated and added to the ephemeral
segment list if more than one new field value is specified.

CleanupInstances

PURPOSE: This function is called by the CLIPS garbage collector,
PeriodicCleanup in the Utility Module, to deallocate
garbage collectied instances which are not busy and which
were created at an evaluation depth greater than the current
one.

CoreInitializeInstance

PURPOSE: Support routine for InitializeInstance and MakeInstance
which performs the following steps to initialize an instance:

1) Get all default slot value expressions from the class
definition.
2) Replace default slot value expressions with slot-overrides
as appropriate.
3) Evaluate slot-overrides with put messages.
4) Evaluate remaining default slot values via init message.

ARGUMENTS: 1) A pointer to the instance.
2) A series of slot-override expressions.

RETURNS: A non-zero integer if the instance is successfully initialized,
zero otherwise.

OTHER NOTES: This function does not need to be global; it will be made an
internal function in the next release of CLIPS.

DecrementInstanceDepth

PURPOSE: Support routine for PropogateReturnValue in the
Evaluation Module which decrements the evaluation depth
of an instance.

ARGUMENTS: A pointer to an instance.

Embedded Access for Instances

PURPOSE: The following functions are provided for embedded access
and are documented in the Advanced Programming Guide:

CLIPS Architecture Manual 361

DecrementInstanceCount, GetInstancesChanged,
IncrementInstanceCount and SetInstancesChanged.

OTHER NOTES: There are additional embedded access functions for
instances in the Instances Commands Module.

EvaluateAndStoreInDataObject

PURPOSE: Support routine for EvaluateDefaultSlots in the Class
Commands Module, HandlerPutSlot in the
Message-Handler Commands Module,
EvaluateInstanceSlots and
CheckMultifieldSlotModify which evaluates a series of
expressions and stores the result in a data object.

ARGUMENTS: 1) An integer code indicating whether to store the result in an
atomic data object (0) or a multifield data object (1), if the
expression is atomic (i.e. the "next argument" pointer is
NULL).
2) The series of expressions to evaluate.
3) A data object buffer to hold the result.

RETURNS: The integer zero if there are any errors while evaluating the
expressions, MULTI_CLEAR (1) if the expression list is
NULL, or MULTI_SET (2) otherwise (see Slot Value
Expression Evaluation Codes).

EvaluateInstanceSlots

PURPOSE: Directly evaluates class default slot expressions for slot
values which were not specified by slot-overrides (i.e. the
"override" flag was not set for the slot; see the general notes
in the Instance Commands Module) in the make-instance
or initialize-instance call.

ARGUMENTS: A data object buffer which holds the instance address if there
were no errors, the symbol FALSE otherwise. This will be the
CLIPS return value of the init message in the absence of
any other user-defined message-handlers.

OTHER NOTES: Implementation of the CLIPS function init-slots.

This function operates on the active instance. This function
will normally be called as a result of
CoreInitializeInstance sending an init message to an
instance. This allows the user to define other
message-handlers to perform actions before and after slot
default initialization as described in the Basic Programming
Guide.

362 Instance Functions Module

The "initialization evaluation" flag for the instance (see the
general notes in the Instance Commands Module) will be set
if the appropriate prologue has been performed. The
prologue is outlined in the description of
CoreInitializeInstance. This function clears that flag to
inform CoreInitializeInstance that the initialization is
complete.

FindInstanceBySymbol

PURPOSE: Uses a hash table lookup to determine the address of the
specified instance.

ARGUMENTS: The symbolic name of the instance.

RETURNS: The address of the instance, NULL if not found.

FindInstanceSlot

PURPOSE: Determines the address of the specified slot.

ARGUMENTS: 1) The address of the instance.
2) The symbolic name of the slot.

RETURNS: The address of the instance slot, NULL if not found.

FindInstanceTemplateSlot

PURPOSE: Uses a binary search on the symbolic hash value of the slot
name to find the index of the specified slot in a class's
instance slot template array.

ARGUMENTS: 1) The address of the class.
2) The symbolic name of the slot.

RETURNS: An integer index into the class's instance slot template array,
-1 if not found.

InitializeInstance

PURPOSE: Initializes an instance. The descriptions of
ParseInitializeInstance in the Instance Commands
Module and CoreInitializeInstance give more details.

ARGUMENTS: A data object buffer for holding the result: the instance name
on success or the symbol FALSE otherwise.

OTHER NOTES: Implementation of the CLIPS function initialize-instance.

CLIPS Architecture Manual 363

InitializeInstanceTable

PURPOSE: Support routine for SetupInstances in the Instance
Commands Module which allocates and initializes the
instance hash table.

MakeInstance

PURPOSE: Creates and initializes a new instance. The descriptions of
ParseInitializeInstance in the Instance Commands
Module and CoreInitializeInstance give more details.

ARGUMENTS: A data object buffer for holding the result: the instance name
on success or the symbol FALSE otherwise.

OTHER NOTES: Implementation of the CLIPS function make-instance.

NoInstanceError

PURPOSE: Displays an error message when an instance cannot be
found for a function call.

ARGUMENTS: 1) The name of the instance.
2) The name of the calling function.

PutSlotValue

PURPOSE: Stores a new value in a slot of an instance. All slot writing is
passed through this central routine.

ARGUMENTS: 1) Address of the instance.
2) Address of the instance slot.
3) Data object holding the new slot value.
4) An integer code indicating whether to print watch
messages for slot changes (1) or not (0).

RETURNS: An integer code indicating the result: SLOT_ERROR,
SLOT_EMPTY or SLOT_FILLED (see Slot Value Set
Codes).

OTHER NOTES: Old slot values are deinstalled and deallocated, and new
slot values are installed. (De)installing a slot value means
(de)incrementing the "in use" counts of all atoms in the data
object. If the new value is a multifield, the a duplicate of the
segment is assigned to the slot.

364 Instance Functions Module

QuashInstance

PURPOSE: Removes an instance from its class's instance list and the
global instance list and hash table. Also, all slot values are
deinstalled (see InstallInstance) and erased. If the
instance is not busy, it is deallocated, otherwise is it is added
to the instance garbage collection list (see
InstanceGarbageList).

ARGUMENTS: A pointer to the instance.

RETURNS:` A non-zero integer if the instance was successfully deleted,
zero otherwise.

OTHER NOTES: The links going out from the instance to its class's list and the
global class list and instance table are left unchanged; this
allows outstanding pointers to this instance to still use it to
follow links.

SlotExistError

PURPOSE: Prints out an appropriate error message when a slot cannot
be found for a function.

ARGUMENTS: 1) The slot name.
2) The name of the calling function.

SlotValueExpression

PURPOSE: Support routine for EvaluateDefaultSlots in the Class
Commands Module which generates an expression (or
series of expressions in the case of a multifield) equivalent to
a data object value for storage as a class slot default value.

ARGUMENTS: A data object address.

RETURNS: The equivalent expression(s).

StaleInstanceAddress

PURPOSE: Prints out an appropriate error message when an attempt is
made to access an instance which is on the garbage
collection list via a previously bound address.

ARGUMENTS: The name of the calling function.

CLIPS Architecture Manual 365

ValidSlotValue

PURPOSE: Determines if a value is comprised of legal atoms for an
instance slot. If it is not, the function generates an evaluation
error and prints out an error message.

ARGUMENTS: 1) A data object pointer.
2) The name of the calling function.

RETURNS: A non-zero integer if the value is acceptable, zero otherwise.

INTERNAL FUNCTIONS

BuildDefaultSlots

PURPOSE: Support routine for BuildInstance which allocates an array
of instance slots for a new instance.

OTHER NOTES: The new slots are attached to the instance indicated by the
global CurrentInstance.

The address to hold the actual value of each slot is initialized
according to the shared facet (see the general notes in the
Instance Commands Module).

HashInstance

PURPOSE: Generates an index into the instance hash table for a given
instance.

ARGUMENTS: The symbolic name of a instance.

RETURNS: The hash table index for the instance.

OTHER NOTES: The hash table index is derived from the symbol hash table
index (see the Symbol Manager Module).

InsertSlotOverrides

PURPOSE: Support routine for CoreInitializeInstance which sends
put messages for each slot-override.

ARGUMENTS: 1) A pointer to the instance.
2) A series of slot-override expressions.

RETURNS: A non-zero integer if successful, zero otherwise.

OTHER NOTES: The "slot override" flag is set for each slot with an override.
These flags are later used by EvaluateInstanceSlots

366 Instance Functions Module

determine which slots need class default values and should
be cleared by that function.

InstallInstance

PURPOSE: Support routine for BuildInstance which increments or
decrements the "in use" counts of all atoms (e.g. symbols)
associated with an instance, i.e the instance name and the
slot values. This insures that all of these items persist at least
as long as the instance does.

ARGUMENTS: 1) A pointer to an instance.
2) An integer code indicating whether to increment (1) or
decrement (0) "in use" counts.

InstanceLocationInfo

PURPOSE: Support routine for BuildInstance which where a new
instance belongs in the instance hash table.

ARGUMENTS 1) The symbolic name of the new instance.
2) A buffer for holding the address of the instance previous to
the new one in the hash table.
3) A buffer for the hash value of the new instance.

RETURNS: A pointer to an old instance of the same name, NULL if none.

InstanceSizeHeuristic

PURPOSE: Support routine for CleanupInstances and
QuashInstance which determines the amount of memory
required by an instance. This amount is added or subtracted
from a global count when the instance is added or removed
from the instance garbage collection list respectively.

ARGUMENTS: The address of an instance.

RETURNS: The amount of memory required by the instance.

OTHER NOTES: Implemented as a preprocessor macro.

CLIPS normally allows garbage memory to accumulate to a
certain level before bothering to release it back to the
system. This drastically improves performance.

NewInstance

PURPOSE: Support routine for BuildInstance which allocates a new
instances data structure and initializes all the fields.

CLIPS Architecture Manual 367

RETURNS: The address of anew instance.

StoreValuesInMultifield

PURPOSE: Support routine for EvaluateAndStoreInDataObject
which creates a multifield and stores a series of values in it.

ARGUMENTS: 1) A series of atomic data objects chained together via their
"next" fields.
2) A data object buffer to hold the resulting multifield.
3) The number of data objects in the source list.

368 Instance Functions Module

Message-Handler Commands Module

The Message-Handler Commands Module (msgcom.c) contains the parsing and
general interface routines for the procedural attachments (message-handlers) to
classes. For a description of the defmessage-handler construct, see the Basic
Programming Guide. The defmessage-handler construct capability, along with the
other features of the CLIPS Object-Oriented Language (COOL), can be removed by
using the appropriate compile flag in the setup header file. The message-handler data
structure is summarized in the following diagram:

Bitfields (stored as 1 integer)

Busy Count (int)

Class (Class Pointer)

Name (Symbol Pointer)

System (1 bit)

Mark (1 bit)

Actions (Expression Pointer)

Type (2 bits)

Pretty-Print Form (array of char)

Minimum Parameters (int)

Maximum Parameters (int)

The internal data structure of a defmessage-handler construct primarily consists of:
a symbolic name; a pointer to the parent class; two integers, which indicate the
minimum and maximum number of arguments the handler will accept respectively;
and a sequence of expressions which comprise the body of the handler. If a handler
has a wildcard parameter (i.e. the handler will accept any number of arguments
greater than or equal to the minimum number of arguments), the maximum number of
arguments field will have the value -1. A busy count for each handler reflects how
many times a handler is executing on behalf of a message. This busy must be zero
before any of the handlers of the class to which this handler belongs can be modified.
Other fields in the handler data structure include: the pretty-print form and bitfields. The
bitfields are stored in a single integer and indicate the following information about a
handler: whether the handler is one of the predefined ones attached to the USER
class, the type code (see Message-Handler Type Codes in the Message-Handler
Functions Module) and whether the handler has been marked for deletion.

When a handler is called during a message dispatch (see the Message-Handler
Functions Module), if the number of arguments is outside the acceptable range, the
entire message is immediately terminated and an error is generated. Otherwise, all the
actions of the handler are evaluated in order as if they were grouped in a progn. The
evaluation of the last expression in the handler body is returned as the value of the
handler, unless an error occurs or the return function is used (see the Basic
Programming Guide).

CLIPS Architecture Manual 369

The arguments of a handler are evaluated and stored in order in an array of data
objects called the message parameter array (CurrentMessageFrame). Variable
references within the body of a handler are replaced when the construct is loaded with
function calls which either access the bind list (see the Primary Functions Module), get
the value of a global variable (see the Defglobal Manager Module) or positionally
access the message parameter array (HandlerRtnUnknown). For example,
references to the second parameter of a handler are replaced with function calls which
access the second data object in the parameter array at run-time.

A wildcard parameter allows the handler to accept any number of arguments. All
references to the wildcard parameter are replaced with a call to a special function,
HandlerWildargs, which groups all of the data objects in the parameter array
starting at the position of the wildcard parameter to the end of the array into a multifield
data object.

If a parameter (including a wildcard parameter) is rebound anywhere within the
body of the deffunction, all references to that parameter are replaced with calls to a
special function, HandlerGetBind, which first checks the bind list before accessing
the parameter array.

GLOBAL VARIABLES

DELETE_STRING

PURPOSE: Lexeme for DELETE_SYMBOL.

OTHER NOTES: Implemented as a preprocessor constant in msgcom.h.

DELETE_SYMBOL

PURPOSE: A symbol used in constructing direct delete messages sent
to instances by various internal COOL routines, such as
MakeInstance.

INIT_STRING

PURPOSE: Lexeme for INIT_SYMBOL.

OTHER NOTES: Implemented as a preprocessor constant in msgcom.h.

INIT_SYMBOL

PURPOSE: A symbol used in constructing direct init messages sent to
an instances by MakeInstance.

370 Message-Handler Commands Module

INTERNAL VARIABLES

PRINT_STRING

PURPOSE: Name of the predefined system message-handler attached
to the USER class which pretty-prints an instance.

OTHER NOTES: Implemented as a preprocessor constant.

SELF_LEN

PURPOSE: Length of SELF_STRING .

OTHER NOTES: Implemented as a preprocessor constant.

SELF_SLOT_REF

PURPOSE: The string used to attach a direct slot reference to active
instance parameter in a message-handler.

OTHER NOTES: Implemented as a preprocessor constant.

SELF_STRING

PURPOSE: Lexeme for SELF_SYMBOL .

OTHER NOTES: Implemented as a preprocessor constant.

SELF_SYMBOL

PURPOSE: The symbol used to represent the active instance parameter.

GLOBAL FUNCTIONS

AddSystemHandlers

PURPOSE: Support routine for SetupMessageHandlers which
defines the three system message-handlers for initialization,
deletion and printing and attaches them to the USER class.

CheckHandlerAgainstSlots

PURPOSE: Support routine for AddClass in the Class Functions
Module and ParseDefmessageHandler which insures
that a message-handler does not conflict with the implicit
handlers (slot-accessors) for a class. For example, if a class
has a slot called bar, it is illegal to define an explicit primary
handler called get-bar or put-bar.

CLIPS Architecture Manual 371

ARGUMENTS: 1) A pointer to a class.
2) The symbolic name of the message-handler.
3) An integer code representing the type of the handler (see
Message-Handler Type Codes in the Message-Handler
Functions Module).

RETURNS: A non-zero integer if the handler does not conflict with any of
the slots, zero otherwise.

OTHER NOTES: The new handler will be illegal only if it is primary and it
conflicts with one of the direct slots of a class. Primary
handlers with same name as an inherited slot will shadow
the slot-accessor. The Basic Programming Guide gives a
complete explanation of handler shadowing.

CmdListDefmessageHandlers

PURPOSE: Lists message-handlers for a class.

OTHER NOTES: Implementation of the CLIPS function
list-defmessage-handlers.

CmdUndefmessageHandler

PURPOSE: Removes a message-handler from a class.

OTHER NOTES: Implementation of the CLIPS function
undefmessage-handler.

Embedded Access for
Defmessage-Handlers

PURPOSE: The following functions are provided for embedded access
and are documented in the Advanced Programming Guide:
DeleteDefmessageHandler,
FindDefmessageHandler,
GetDefmessageHandlerName,
GetDefmessageHandlerPPForm,
GetDefmessageHandlerType,
GetNextDefmessageHandler,
IsDefmessageHandlerDeletable,
ListDefmessageHandlers, PreviewMessage and
WildDeleteHandler.

OTHER NOTES: There are additional embedded access functions for
message-handlers in the Message-Handler Functions
Module.

372 Message-Handler Commands Module

GroupHandlerWildargs

PURPOSE: Stores the message parameter array elements from the
specified beginning index minus one to the end of the array
in the caller's multifield data object.

ARGUMENTS: 1) A pointer to a data object to hold the resulting multifield
value.
2) The index (one is the beginning) from which to start
copying the parameter array.

HandlerDeleteSlot

PURPOSE: Deletes fields from a multifield slot value of the active
instance.

RETURNS: A non-zero integer if the slot was modified successfully, zero
otherwise.

OTHER NOTES: Implementation of the CLIPS function direct-mv-delete.

HandlerGetBind

PURPOSE: Determines the value of a specified variable reference within
the body of a handler. The symbolic name of the variable
and an index indicating if the variable is a handler parameter
are CLIPS supplied arguments. If the variable is on the bind
list, that value is returned. Otherwise, the value of the
parameter specified by the index is returned. In the event
that the variable is neither on the bind list nor is it a
parameter, an error will be generated.

ARGUMENTS: A pointer to a data object which will hold the value of the
bound variable.

OTHER NOTES: Implementation of the internal CLIPS function
(hndgetbind).

Used for general variable references, including bind list
variables and handler parameters which are rebound within
the actions of the handler. If the index is zero, the variable is
not a handler parameter. The absolute value of the index
minus one is the position of the parameter in the message
parameter array. If the index is less than zero, the variable
corresponds to the wildcard parameter.

CLIPS Architecture Manual 373

HandlerGetSlot

PURPOSE: Directly reads the slot specified by the CLIPS supplied
argument of the active instance.

ARGUMENTS: Data object buffer for holding the slot value.

OTHER NOTES: Implementation of the CLIPS function get.

Direct slot references in a handler are replaced with calls to
this function when the handler is parsed (see
ReplaceHandlerParameters).

HandlerInsertSlot

PURPOSE: Inserts fields into a multifield slot value of the active instance.

RETURNS: A non-zero integer if the slot was modified successfully, zero
otherwise.

OTHER NOTES: Implementation of the CLIPS function direct-mv-insert.

HandlerPutSlot

PURPOSE: Directly writes a value to the slot (both specified by CLIPS
supplied arguments) of the active instance.

RETURNS: A non-zero integer if the write was successful, zero
otherwise.

OTHER NOTES: Implementation of the CLIPS function put.

HandlerReplaceSlot

PURPOSE: Replaces fields in a multifield slot value of the active
instance.

RETURNS: A non-zero integer if the slot was modified successfully, zero
otherwise.

OTHER NOTES: Implementation of the CLIPS function direct-mv-replace.

HandlerRtnUnknown

PURPOSE: Gets the value of the specified element of the message
parameter array, where the element index plus one is given
as a CLIPS supplied argument.

374 Message-Handler Commands Module

ARGUMENTS: A pointer to a data object which will hold the value of the
bound variable.

OTHER NOTES: Implementation of the internal CLIPS function
(hndunknown).

Used for references to regular handler parameters which are
never rebound within the actions of the handler.

HandlerWildargs

PURPOSE: Gets the values of the specified elements of the message
parameter array and groups them into a multifield data
object, where the range of elements is given by a CLIPS
supplied argument minus one to the end of the message
parameter array.

ARGUMENTS: A pointer to a data object which will hold the value of the
bound variable.

OTHER NOTES: Implementation of the internal CLIPS function
(hndwildargs).

Used for references to a wildcard handler parameter which
is never rebound within the actions of the handler.

PPDefmessageHandler

PURPOSE: Displays the pretty-print form of a message-handler.

OTHER NOTES: Implementation of the CLIPS function
ppdefmessage-handler.

PreviewMessageCmd

PURPOSE: Displays all the applicable message-handlers for a particular
send call. The message and arguments are supplied by
CLIPS.

OTHER NOTES: Implementation of the CLIPS function preview-send.

SetupMessageHandlers

PURPOSE: Defines all functions and commands for the
defmessage-handler construct. Sets up all necessary load
and watch interfaces.

OTHER NOTES: Initialization differs between standard and run-time
configurations.

CLIPS Architecture Manual 375

INTERNAL FUNCTIONS

CheckHandlerBindList

PURPOSE: Support routine for ParseDefmessageHandler which
insures that a message-handler makes no attempt to rebind
the active instance parameter or direct slot references.

RETURNS: A no-zero integers if all the binds were legal, zero otherwise.

FindHandlerParameter

PURPOSE: Support routine for ReplaceHandlerParameters which
determines the position of a particular parameter in the list of
all message-handler parameters.

ARGUMENTS: 1) The symbolic name of a parameter.
2) The list of parameters parsed so far.

RETURNS: The integer zero if the named parameter is not already in the
list, otherwise the position of the parameter in the list.

InsertHandlerHeader

PURPOSE: Support routine for ParseDefmessageHandler and
NewSystemHandler which appends a new handler into
the array of handlers for a class.

ARGUMENTS: 1) A pointer to the class.
2) The symbolic name of the handler.
3) An integer code representing the type of the handler (see
Message-Handler Type Codes in the Message-Handler
Functions Module).

RETURNS: A pointer to the new handler.

OTHER NOTES: This routine also creates a map of integer indices into the
handler array which gives the order according to the hash
values of the symbolic names of the handlers. Thus,
handlers for a class can be easily found by performing a
binary search on the symbolic hash value of the handler
name.

NewSystemHandler

PURPOSE: Support routine for AddSystemHandlers which adds a
new message-handler to the handler array of the USER
class. A system handler is assumed to be of type primary.
The handler has zero or one explicit parameters, and the

376 Message-Handler Commands Module

body contains one function call which either takes no
arguments or takes the one explicit handler parameter as an
argument.

ARGUMENTS: 1) Name of the system class.
2) Name of the system message-handler.
3) Name of the CLIPS function called in the body of this
handler.
4) An integer code indicating if argument #3 requires a
parameter (1) or not (0).
5) The address of a CLIPS function for accessing handler
parameters (see HandlerRtnUnknown).

OTHER NOTES: In CLIPS 5.1, there are no system handlers which require
the use of a handler parameter. Thus, the third and fourth
arguments to this function are unnecessary and will be
eliminated in the next release.

The CLIPS syntax for the three system message-handlers
are:

(defmessage-handler USER init primary ()
(init-slots))

(defmessage-handler USER delete primary ()
(delete-instance))

(defmessage-handler USER print primary ()
(ppinstance))

ParseDefmessageHandler

PURPOSE: Used by the load command to parse a defmessage-handler.

ARGUMENTS: The logical name of the input source.

RETURNS: The integer zero if there are no parsing errors, non-zero
otherwise.

OTHER NOTES: Installation of the message-handler symbolic name and
action expressions is handled by this routine; deinstallation
is handled by DeallocateMarkedHandlers in the
Message-Handler Functions Module or InstallClass in the
Class Functions Module.

ParseHandlerParameters

PURPOSE: Support routine for ParseDefmessageHandler which
parses a message-handler parameter list.

CLIPS Architecture Manual 377

ARGUMENTS: 1) The logical name of the input source.
2) Buffer for wildcard symbol (if any).
3) Buffer to hold scanned tokens.

RETURNS: A series of expressions containing the parameter names,
NULL on errors.

OTHER NOTES: The active instance parameter is prepended to the list of
parameters.

This routine insures that there are no duplicate parameters
or parameters which look like direct slot references.

ReplaceHandlerParameters

PURPOSE: Support routine for ParseDefmessageHandler which
replaces all variable references in the message-handler
actions with appropriate function calls that access the bind
list, the message parameter array or global variables at run-
time. Direct slot references are replaced with calls to the
function get.

ARGUMENTS: 1) The list of action expressions.
2) The list of parameter name expressions.
3) The symbolic name of a wildcard parameter (if any).

RETURNS: The integer zero if there are no parsing errors, non-zero
otherwise.

378 Message-Handler Commands Module

Message-Handler Functions Module

The Message-Handler Functions Module (msgfun.c) implements the message
dispatch when a message is actually sent to an object and maintains the internal
details of the defmessage-handler construct. For a description of the
defmessage-handler construct, see the Basic Programming Guide. The
defmessage-handler construct capability, along with the other features of the CLIPS
Object-Oriented Language (COOL), can be removed by using the appropriate compile
flag in the setup header file.

When a message is dispatched with the send function, CLIPS creates the
message parameter array, which is comprised of the message object and arguments,
and forms a list of all the applicable methods to the message. The handlers in this list
are linked using a temporary data structure called a handler link:

Bitfields (stored as 1 integer)

Next Link (Handler Link Pointer)

Handler (Generic Pointer to
Handler or Instance Slot) Implicit (1 bit)

Read (1 bit)

Type (2 bits)Handler Link

A handler contains: a generic pointer, which is a pointer to an explicit
defmessage-handler or an instance slot if the handler is a slot-accessor, bitfields and a
pointer to the next handler link. The bitfields indicate the following: whether the
handler is a slot-accessor (i.e implicit); the type of the handler (see
Message-Handler Type Codes); and, if the handler is a slot-accessor, whether it
is for reading or for writing. The details of forming the list of applicable handlers are
given in the description of the function FindApplicableHandlers. The mechanics of
a message dispatch are outlined in the description of the function
DispatchMessage.

GLOBAL VARIABLES

CurrentMessageFrame

PURPOSE: A pointer to an array of data objects which are the evaluated
arguments for the currently executing message.

CurrentMessageName

PURPOSE: A symbol indicating the name of the currently executing
message used for error and trace messages.

CurrentMessageSize

PURPOSE: An integer indicating the number of data objects in the
currently executing message's parameter array.

CLIPS Architecture Manual 379

hndquals

PURPOSE: An array of strings giving the textual descriptions of the
message-handler types (see Message-Handler Type
Codes). A handler type is an integer code, and the string
corresponding to a type n is in the nth position of the array,
e.g. hndquals[MAROUND] is "around". This array is used in
printing out trace and error messages as well as parsing
handler types.

Message-Handler Lookup Codes

PURPOSE: The integer codes LOOKUP_HANDLER_ADDRESS and
LOOKUP_HANDLER_INDEX are used by the function
FindHandler to determine whether to return
message-handler addresses or indices into the class's
handler array.

OTHER NOTES: Implemented as preprocessor constants in msgfun.h.

Message-Handler Type Codes

PURPOSE: MAFTER, MAROUND, MBEFORE, MPRIMARY and MERROR
(see the description of around, before, after and primary
handlers in the Basic Programming Guide)..

OTHER NOTES: Implemented as preprocessor constants in msgfun.h.

Slot-Accessor Prefix Strings

PURPOSE: GSM_PREFIX is the string prepended to all slot names to
yield the name of the read slot-accessor, and GSMP_LEN
is the length of that string. PSM_PREFIX is the string
prepended to all slot names to yield the name of the write
slot-accessor, and PSMP_LEN is the length of that string.

OTHER NOTES: Implemented as preprocessor constants in msgfun.h.

WatchHandlers

PURPOSE: An integer flag indicating whether or not to print out trace
information whenever a message-handler begins and ends
execution. This flag is used by the watch command.

WatchMessages

PURPOSE: An integer flag indicating whether or not to print out trace
information whenever a message begins and ends
execution. This flag is used by the watch command.

380 Message-Handler Functions Module

INTERNAL VARIABLES

CurrentCore

PURPOSE: A handler link to the currently executing message-handler.

Message Trace Strings

PURPOSE: BEGIN_TRACE and END_TRACE are the strings used in
trace printouts to indicate the beginning and end of
execution of a message or a message-handler.

OTHER NOTES: Implemented as preprocessor constants.

NextInCore

PURPOSE: A handler link to the next applicable message-handler after
the currently executing handler.

PERFORM

PURPOSE: Unused preprocessor constant which will be removed in the
next release.

PREVIEW

PURPOSE: Unused preprocessor constant which will be removed in the
next release.

TopOfCore

PURPOSE: A handler link to the applicable message-handler with the
highest precedence. The list is in order according to
message-handler precedence.

GLOBAL FUNCTIONS

CallNextHandler

PURPOSE: Executes message-handlers shadowed by the currently
executing handler. This function can only be called from the
actions of the currently executing message-handler.

ARGUMENTS: A pointer to a data object to store the return value of the
shadowed handlers.

OTHER NOTES: Implementation of the CLIPS functions call-next-handler
and override-next-handler.

CLIPS Architecture Manual 381

Following is a summary of CallNextHandler:

1. Immediately return with an error in all but the following
scenarios:
1a) The currently executing handler (CurrentCore) is of
type around, and there is at least one shadowed handler
available, or
1b) The currently executing handler is of type primary, and
the next available handler (NextInCore) is also of type
primary.

2. If override-next-handler has been called, save the old
message parameter array, and create a new one based on
the function arguments.
3. Save the state of the bind list and then destroy it.
4. Save the values of CurrentCore and NextInCore and
then advance them ahead one in the list of applicable
handlers.
5. If the currently executing handler is of type primary, go to
step 7.
6. If the next available handler is of type around, call
EvaluateExpression for the actions of that handler and
capture the result. Otherwise, call CallHandlers for the
remaining core of handlers and capture the result. Go to step
8.
7. If the next available handler is not a slot-accessor, call
EvaluateExpression for the actions of that handler and
capture the result. Otherwise, call
PerformImplicitHandler to execute the slot-accessor and
capture the result.
8. Restore the previous bind list, the values of CurrentCore
and NextInCore and the message parameter array (if
necessary).
9. Clear ReturnFlag.

CheckCurrentMessage

PURPOSE: Insures that a message is currently executing for functions
which operate on the active instance.

ARGUMENTS: 1) Name of the calling function.
2) An integer flag indicating if the function can operate on
primitive type objects (0) or only instances of user-defined
classes (1).

RETURNS: A non-zero integer if the active instance is valid, zero
otherwise.

382 Message-Handler Functions Module

DeallocateMarkedHandlers

PURPOSE: Support routine for ClearDefclasses and AddClass in
the Class Functions Module as well as
DeleteDefmessageHandler in the Message Commands
Module and DeleteHandler which removes marked
handlers from a class's handler array.

ARGUMENTS: A pointer to the class.

OTHER NOTES: The "mark" fields of the handlers are assumed to have been
set by the calling function.

A symbolic hash value sorted map of handlers is also kept
with the class (see the general notes in the Class
Commands Module). In order to update this map after the
deletion of handlers, the "busy" field of a handler is
temporarily used to count how many handlers before it in the
array will be deleted. That handlers position in the map is
then adjusted accordingly.

DeleteHandler

PURPOSE: Support routine for WildDeleteHandler which removes
one or more handlers from a class.

ARGUMENTS: 1) A pointer to the class.
2) The symbolic name of the handler. If the name is "*", and
there is no handler named "*" in the class, then all handlers
matching the type will be deleted.
3) An integer code representing the type of the handler (see
Message-Handler Type Codes). If the type is -1, then all
message-handlers matching the name will be deleted.
4) An integer flag indicating whether to print error messages
when matching handlers cannot be found (1) or not (0).

RETURNS: A non-zero integer if the handlers are successfully deleted,
zero otherwise.

DestroyHandlerLinks

PURPOSE: Support routine for PreviewMessage in the Message
Commands Module and PerformMessage which
deallocates the temporary links between a core of handlers
applicable to a message.

ARGUMENTS: A pointer to the top of the temporary handler links.

CLIPS Architecture Manual 383

OTHER NOTES: The "busy" counts of the handlers and their classes, which
were incremented by FindApplicableHandlers, are
decremented.

DirectMessage

PURPOSE: Support routine for functions in the Instance Commands and
Functions Modules which sends a message to an object, e.g.
the init message in a make-instance call.

ARGUMENTS: 1) The first part of the message name in the form of a string
(can be NULL).
2) The second part of the message name in the form of a
symbol.
3) A pointer to an instance.
4) A data object buffer for storing the result of the message
(can be NULL if irrelevant).
5) A series of expressions representing the message
arguments.

OTHER NOTES: The message name is broken into two arguments so that
slot-accessor messages can easily be formed from slot
names. However, the slot-accessor symbol names are
stored with the slot, so the symbol could be passed directly
rather than requiring that this routine construct them. This
routine will be enhanced in the next release.

DispatchMessage

PURPOSE: This routine is called by EvaluateExpression in the
Evaluation Module to process a message. The message
name, object and arguments are supplied by CLIPS. The
message dispatch is described in detail in the Basic
Programming Guide.

ARGUMENTS: A data object buffer to hold the result of the message.

OTHER NOTES: Implementation of the CLIPS function send.

This function determines the symbolic name of the message
from the CLIPS arguments and prepends the message
object expression to the other message arguments. The bulk
of the message dispatch is done by the routines
PerformMessage, CallHandlers and
CallNextHandler.

384 Message-Handler Functions Module

DisplayCore

PURPOSE: Support routine for PreviewMessage in the Message
Commands Module which recursively displays the set of
applicable handlers for a particular message.

ARGUMENTS: 1) A list handler links to applicable handlers.
2) The level of indentation indicating the depth of handler
shadowing.

Embedded Access for
Defmessage-Handlers

PURPOSE: The function CLIPSSendMessage is provided for
embedded access and is documented in the Advanced
Programming Guide.

OTHER NOTES: There are additional embedded access functions for
message-handlers in the Message-Handler Commands
Module.

FindHandler

PURPOSE: Support routine for ParseDefmessageHandler and
others in the Message Commands Module and
DeleteHandler which looks up a message-handler.

ARGUMENTS: 1) A pointer to a class.
2) The symbolic name of the handler.
3) An integer code representing the type of the handler (see
Message-Handler Type Codes).
4) An integer code indicating for the return value to be a
handler address or an index into the class's handler array
(see Message-Handler Lookup Codes).

RETURNS: If a handler address was requested, a generic pointer is
returned which is the handler address, or NULL if not found.
Otherwise, an integer typecast into a generic pointer is
returned which is the index of the handler in the class's
handler array, or -1 if not found.

FindHandlerNameGroup

PURPOSE: Support routine for ListDefmessageHandlers in the
Message Commands Module, FindHandler and
FindApplicableOfName which performs a binary search
on the symbolic hash value of the handler name to find a
group of handlers which names all have the same hash
value as the given name.

CLIPS Architecture Manual 385

ARGUMENTS: 1) A pointer to a class.
2) The symbolic name of a handler.

RETURNS: An index into the sorted hash value map of the class's
handler array where handlers which names have the same
hash value as the given name begin, -1 if there are none.
The actual given name must be present in the group (e.g.
they could all be handlers which names just happened to
have the same hash value as the given name), or the return
value will still be -1.

FindPreviewApplicableHandlers

PURPOSE: Support routine for PreviewMessage in the Message
Commands Module which generates a ranked list of
applicable message-handlers for a message.

ARGUMENTS: 1) A pointer to a class.
2) The symbolic name of the message.

RETURNS: The top of a list of temporary handler links forming the core
of applicable handlers.

OTHER NOTES: This function differs from FindApplicableHandlers in that
it uses FindClassSlot to find slot-accessor handlers rather
than FindInstanceSlot.

HandlerDeleteError

PURPOSE: Support routine for ClearDefclasses in the Class
Functions Module, DeleteDefmessageHandler in the
Message Commands Module and DeleteHandler which
prints out an error message when a message-handler
cannot be deleted from a class.

ARGUMENTS: The name of the class.

HandlersExecuting

PURPOSE: Support routine for message-handler parsing and deletion
routines which determines if any handlers attached to a
class are currently executing..

ARGUMENTS: A pointer to the class.

RETURNS: A non-zero integer if any of the handlers of the class are
executing, zero otherwise.

386 Message-Handler Functions Module

HandlerType

PURPOSE: Support routine for message-handler parsing and access
routines which determines the integer code for a handler
type given the string representation (see
Message-Handler Type Codes).

ARGUMENTS: 1) The name of the calling function.
2) The string representation of the handler type, e.g.
"primary"

RETURNS: The handler type code.

NewHandler

PURPOSE: This function is not used in CLIPS 5.1 and will be deleted in
the next release.

NextHandlerAvailable

PURPOSE: Determines if a shadowed message-handler is available for
execution by call-next-handler or
override-next-handler. See the description of
CallNextHandler for details.

RETURNS: A non-zero integer if a shadowed handler is available, zero
otherwise.

OTHER NOTES: Implementation of the CLIPS function next-handlerp.

PrintAbbreviatedHandlerRemoval

PURPOSE: Support routine for DeleteClass in the Class Functions
Module and DeallocateMarkedHandlers which a brief
description of a message-handler being removed.

ARGUMENTS: A pointer to the handler.

PrintCurrentMessage

PURPOSE: Support routine for HandlerGetBind in the Message
Commands Module which prints a synopsis of the currently
executing message for unbound variable errors.

ARGUMENTS: Logical name of the output destination.

CLIPS Architecture Manual 387

PrintHandler

PURPOSE: Support routine for DisplayHandlersInLinks in the Class
Commands Module, ListDefmessageHandlers in the
Message Commands Module, PrintCurrentMessage,
PrintPreviewHandler and TraceHandler which displays
a brief description of a message-handler.

ARGUMENTS: 1) Logical name of the output destination.
2) Name of the class.
3) Name of the handler.
4) Handler type string.

INTERNAL FUNCTIONS

CallHandlers

PURPOSE: Support routine for PerformMessage and
CallNextHandler which executes all the before, primary
and after message-handlers applicable to a message.

ARGUMENTS: A data object buffer to hold the result of executing the most
specific primary handler.

OTHER NOTES: Following is a summary of CallHandlers:

1 Save the state of the bind list and then destroy it.
2. Save the values of CurrentCore and NextInCore.
3) Call EvaluateExpression for the actions of each
before handler in order and advance CurrentCore and
NextInCore appropriately.
4) Call EvaluateExpression for the actions of the first
primary handler, capture the result and advance
CurrentCore and NextInCore to skip over any other
primary handlers. Other primary handlers are shadowed
by the first, and call-next-method must be used within the
body of the first primary handler to execute them.
5) Call EvaluateExpression for the actions of each after
handler in order and advance CurrentCore and
NextInCore appropriately.
6) Restore the bind list and the old values of CurrentCore
and NextInCore.

The bind list is reset and ReturnFlag is cleared after the
execution of each handler.

388 Message-Handler Functions Module

CheckHandlerArgCount

PURPOSE: Support routine for PerformMessage, CallHandlers and
CallNextHandler which verifies that the current message
parameter array satisfies the current handler's parameter
count restriction.

RETURNS: A no-zero integer if the number of arguments is satisfactory,
zero otherwise.

DisplayPrimaryCore

PURPOSE: Support routine for DisplayCore which recursively displays
the set of applicable primary handlers for a particular
message.

ARGUMENTS: 1) A list of handler links to applicable handlers.
2) The level of indentation indicating the depth of handler
shadowing.

RETURNS: The handler link to the handler immediately following the
primary handlers (if any).

EvaluateMessageParameters

PURPOSE: Support routine for CallNextHandler and
PerformMessage which evaluates all the CLIPS supplied
argument expressions for a message and stores the
resulting values in the message parameter array
(CurrentMessageFrame).

ARGUMENTS: 1) The list of parameter name expressions.
2) The number of parameters.

RETURNS: A pointer to an array of data objects containing the
evaluations of the message argument expressions.

FindApplicableHandlers

PURPOSE: Support routine for PerformMessage which generates a
ranked list of applicable handlers for a message.

ARGUMENTS: 1) A pointer to a class.
2) The symbolic name of the message.

RETURNS: The top of a list of temporary handler links forming the core
of applicable handlers.

CLIPS Architecture Manual 389

OTHER NOTES: The "related symbol" field of the message name is used to
access the slot name symbol when checking if a
slot-accessor handler is applicable to a message. A link in
the core formed by this routine can point to an explicit
defmessage-handler or an instance slot in the case of a
slot-accessor.

A handler is applicable to a message if its name matches
that of the message and it is attached to one of the classes of
which the message object is an instance. All the applicable
handlers are inserted into a "core" of applicable messages
ordered in the following way:

1. All around handlers from the most specific class of the
message object to the most general.
2. All before handlers from the most specific class of the
message object to the most general.
3. All primary handlers from the most specific class of the
message object to the most general.
4. All after handlers from the most general class of the
message object to the most specific.

This ordering is accomplished by forming three queues for
the around, before and primary handlers respectively
and one stack for the after handlers. The class precedence
list of the class of the message object is then examined in
order from most specific to most general. The support routine
FindApplicableOfName takes care of appending all
applicable around, before and primary handlers from a
class to the appropriate queues and pushing an applicable
after handler onto the stack. When all classes have been
processed, the support routine JoinHandlerLinks forms
the core of applicable handlers by simply linking the three
queues and one stack together.

The "busy" counts are incremented for each applicable
handler and the class to which it belongs.

FindApplicableOfName

PURPOSE: Support routine for FindPreviewApplicableHandlers
and FindApplicableHandlers which adds applicable
handlers for a class to the handler type queues and stack.

ARGUMENTS: 1) A pointer to a class.
2) An array of pointers to the tops of the handler link type
queues and stack.
3) An array of pointers to the bottoms of the handler link type

390 Message-Handler Functions Module

queues and stack.
4) The symbolic name of the message.

RETURNS: A no-zero integer if any applicable primary handlers were
found for the class, zero otherwise.

JoinHandlerLinks

PURPOSE: Support routine for FindPreviewApplicableHandlers
and FindApplicableHandlers which handler type queues
and stack together to form the final ordered core of
applicable message-handlers.

ARGUMENTS: 1) An array of pointers to the tops of the handler link type
queues and stack.
2) An array of pointers to the bottoms of the handler link type
queues and stack.
3) The symbolic name of the message.

RETURNS: The core list of applicable handlers, NULL on errors.

OTHER NOTES: If there are no applicable primary handlers, this routine
deletes the queues and stack and issues an error message.

PerformImplicitHandler

PURPOSE: Support routine for CallNextHandler and CallHandlers
which handles the execution of slot-accessor handlers (i.e.
get- and put- messages).

ARGUMENTS: A data object buffer to hold the result of the slot access.

PerformMessage

PURPOSE: Support routine for CLIPSSendMessage ,
DirectMessage and DispatchMessage which is the
main driver for a message dispatch.

ARGUMENTS: 1) A data object buffer to hold the result of the message.
2) A series of message argument expressions/
3) The symbolic name of the message.

OTHER NOTES: Following is a summary of PerformMessage:

1. Save previous values of globals, such as
CurrentMessageName and TopOfCore, and set them
for the new message.
2. Save the state of the bind list and then destroy it.
3. Save the states of the return and break contexts and set

CLIPS Architecture Manual 391

them to FALSE.
4. Increment the evaluation depth (see the Evaluation
Module).
5. Count and evaluate the arguments and store them in the
message parameter array. The message object will always
be the first element in the parameter array.
6. Increment the "busy" count of the message object if it is an
instance of a user-defined class.
7. Call FindApplicableHandlers to determine the set of
applicable handlers for the message.
8. If the first available handler is of type around, call
EvaluateExpression for the actions of that handler and
capture the result. Otherwise, call CallHandlers for the
core of handlers and capture the result.
9. Deallocate the core of applicable handlers.
10. Restore all global values to their previous states.
11. Decrement the evaluation depth.
12. Clear ReturnFlag.
13. Adjust the evaluation depth of the return value (see
PropogateReturnValue in the Evaluation Module).
14. Perform garbage collection.

PrintNoHandlerError

PURPOSE: Support routine for CLIPSSendMessage and
JoinHandlerLinks which prints out an error message
when no applicable primary handlers can be found for a
message dispatch.

ARGUMENTS: The name of the message.

PrintPreviewHandler

PURPOSE: Support routine for DisplayCore and
DisplayPrimaryCore which prints a synopsis of a handler.

ARGUMENTS: 1) A handler link in the list of applicable handlers.
2) The level of indentation indicating the depth of handler
shadowing.
3) A string indicating the beginning or end of execution of a
handler.

TraceHandler

PURPOSE: Used by the watch command to print out trace messages
when a message-handler begins and ends execution.

ARGUMENTS: 1) The logical name of the output destination.
2) A handler link in the list of applicable handlers.

392 Message-Handler Functions Module

3) A string indicating the beginning or end of execution of a
handler.

TraceMessage

PURPOSE: Used by the watch command to print out trace messages
when a message begins and ends execution.

ARGUMENTS: 1) The logical name of the output destination.
2) A string indicating the beginning or end of execution of a
message.

CLIPS Architecture Manual 393

Instance-Set Queries Module

The Instance-Set Queries Module (insquery.c) provides the routines for a useful query
system which can determine and perform actions on sets of instances of user-defined
classes that satisfy user-defined criteria.

Instance-set template

Instance-set member variables

Instance-set query

Instance-set distributed action

CLIPS>
(do-for-all-instances
 ((?car1 MASERATI BMW) (?car2 ROLLS-ROYCE))
 (> ?car1:price (* 1.5 ?car2:price))
 (printout t ?car1 crlf))
[Albert-Maserati]
CLIPS>

Instance-set member class restrictions

Above is an example excerpted from the Basic Programming Guide which shows a
complete instance-set query function call. The instance-set template is internally
represented by a series of data structures called Query Class Restrictions. The
structure is summarized by following diagram:

Query Class Restriction

Class (Class Pointer)

Next Link (QCR Pointer)

Next Class Link (QCR Pointer)

The fields are: a pointer to a class, a pointer to the next class restriction list and a
pointer to the next class in the current restriction list. Thus, for the example above, the
instance-set template would look like:

Class: MASERATI

Next Link:

Next Class Link :

Class: ROLLS-ROYCE

Next Link: NIL

Next Class Link: NIL

Class: BMW

Next Link: NIL

Next Class Link: NIL

CLIPS Architecture Manual 395

While an instance-set query function is executing, it uses a Query Core data
structure to hold information about the query and instance-sets which satisfy the query.
The data structure is summarized in the following diagram:

Query Core

Query (Expression Pointer)

Action (Expression Pointer)

Action Result (Data Object Pointer)

Instance-Set Solution (Instance Pointer Array)

Solution Set Top (Instance Pointer Array)

Solution Set Bottom (Instance Pointer Array)

Instance-Set Size (int)

Solution Count (int)

The fields are: the expression that must be satisfied for generated instance-sets,
the action that will be performed for instance-sets which satisfy the query, a data object
buffer to hold the results of evaluating the action, an intermediary array of instance
pointers to hold the generated instance-sets, the number of instances in an
instance-set, the top and bottom of a list of arrays of instance pointers to save
instance-sets which satisfy the query and the number of instance-sets in the solution
list. Actions are used only for: do-for-instance, do-for-all-instances and
delayed-do-for-all-instances. The solution instance-sets need only be saved for
find-all-instances and delayed-do-for-all-instances.

Instance-set query functions can be nested and can access variables outside their
scope, including the member variables of other instance-set query functions in which
they are nested. Thus, each executing instance-set query function must have its own
unique query core. These cores are stored in a stack of Query Stack Nodes. The
data structure is summarized in the following diagram:

Query Core
Stack Node

Next Link (QCSN Pointer)

Query Core (Query Core Pointer)

The fields are: a pointer to a query core and a pointer to the next query stack node.
A detailed description of how instance-set query functions are parsed is given

ParseQueryAction, ParseQueryNoAction and their associated functions. The
mechanics of processing an instance-set query are given in TestEntireChain,
TestEntireClass, TestForFirstInChain, TestForFirstInChain,
TestForFirstInstanceInClass and their associated functions.

396 Instance-Set Queries Module

GLOBAL VARIABLES

BITS_PER_BYTE

PURPOSE: The number of bits in a byte. Used to determine the number
of bytes necessary to store the traversal map for a class (see
the general notes on the Class Commands Module).

OTHER NOTES: Implemented as a preprocessor constant in object.h.

QUERY_DELIMITER_STRING

PURPOSE: Lexeme for QUERY_DELIMITER_SYMBOL.

QUERY_DELIMITER_SYMBOL

PURPOSE: Symbol used to mark the ends of class restriction lists in the
parsed form of an instance-set query function (see the
functions ParseQueryAction and
ParseQueryNoAction).

MAX_TRAVERSALS

PURPOSE: The maximum number of times a single class can be
examined by simultaneous hierarchy traversals (see the
general notes on the Class Commands Module and also see
the descriptions of CTID , GetTraversalID,
SetTraversalID, TestTraversalID and
ReleaseTraversalID).

OTHER NOTES: Implemented as a preprocessor constant in object.h.

TRAVERSAL_BYTES

PURPOSE: The number of bytes necessary to store the traversal map for
a single class (see the general notes on the Class
Commands Module).

OTHER NOTES: Implemented as a preprocessor constant in object.h.

INTERNAL VARIABLES

AbortQuery

PURPOSE: An integer flag which is set when no instances are found for
a particular instance-set template member which satisfy the
query. When this flag is set, the instance-set query function
being processed will be immediately terminated.

CLIPS Architecture Manual 397

CTID

PURPOSE: The next available integer identifier for a class hierarchy
traversal (see the general notes of the Class Commands
Module). The bit corresponding to the value of this variable
in the traversal map of a class will be set or cleared
depending on whether the class has been examined on that
traversal or not. CTID cannot equal or exceed the value of
MAX_TRAVERSALS since this is the maximum number of
bits in any class traversal map.

INSTANCE_SLOT_REF

PURPOSE: The string used to attach a direct slot reference to an
instance-set member.

OTHER NOTES: Implemented as a preprocessor constant.

QueryCore

PURPOSE: A general state variable storing the test expression,
distributed action expressions and the solution sets of
instance addresses for the currently executing instance-set
query function (see the general notes).

QueryCoreStack

PURPOSE: A pointer to a stack of instance-set query function "cores"
(see QueryCore). The order of the stack indicates a nesting
of instance-set query functions with the topmost core
corresponding to the currently executing query (see the
general notes).

GLOBAL FUNCTIONS

AnyInstances

PURPOSE: Determines if any instance-sets satisfy a query.

RETURNS: A non-zero integer if there were any instance-sets which
satisfied the query, zero otherwise.

OTHER NOTES: Implementation of the CLIPS function any-instancep.

Bit Access Functions

PURPOSE: testbit, setbit and clearbit are used in parsing defclasses
to check for qualifier duplication as well as in marking class

398 Instance-Set Queries Module

hierarchy traversals (see the general notes on the Class
Commands Module).

OTHER NOTES: Implemented as a preprocessor macros in object.h.

DelayedQueryDoForAllInstances

PURPOSE: Performs an action for each instance-set which satisfies a
query after determining all such sets.

ARGUMENTS: A data object buffer to hold the result of evaluating the action
on the last instance-set which satisfied the query.

OTHER NOTES: Implementation of the CLIPS function
delayed-do-for-all-instances.

GetQueryInstance

PURPOSE: References to instance-set member variables within a query
are replaced with calls to this function (see
ReplaceInstanceVariables). The first CLIPS supplied
argument is the nesting depth of the applicable query
function and is used to find the appropriate query core The
second argument is a positional index into the query core's
solution array and is used to find the appropriate instance in
an instance-set satisfying a query.

ARGUMENTS: A data object buffer to hold the name of the instance to which
the instance-set member variable refers.

OTHER NOTES: Implementation of the internal CLIPS function
(query-instance).

GetQueryInstanceSlot

PURPOSE: Direct slot references of instance-set member variables
within a query are replaced with calls to this function (see
ReplaceSlotReference). The first CLIPS supplied
argument is the nesting depth of the applicable query
function and is used to find the appropriate query core The
second argument is a positional index into the query core's
solution array and is used to find the appropriate instance in
an instance-set satisfying a query. The third argument is the
symbolic name expression of the slot.

ARGUMENTS: A data object buffer to hold the value of the direct slot
reference of the instance-set member variable.

CLIPS Architecture Manual 399

OTHER NOTES: Implementation of the internal CLIPS function
(query-instance-slot).

GetTraversalID

PURPOSE: Gets a new unused integer id for a class hierarchy traversal.
The bit corresponding to the new id is cleared in all the
existing class traversal maps (see the general notes in the
Class Commands Module).

RETURNS: An integer indicating the new class hierarchy traversal id.

OTHER NOTES: The global variable CTID is used for the new id. An error will
be generated if CTID already equals or exceeds
MAX_TRAVERSALS, for this means that all the bits in
class traversal maps are in use. Uses the clearbit function.

QueryDoForAllInstances

PURPOSE: Performs an action for each instance-set which satisfies a
query as each set is determined.

ARGUMENTS: A data object buffer to hold the result of evaluating the action
on the last instance-set which satisfied the query.

OTHER NOTES: Implementation of the CLIPS function
do-for-all-instances.

QueryDoForInstance

PURPOSE: Performs an action for the first instance-set which satisfies a
query.

ARGUMENTS: A data object buffer to hold the result of evaluating the action
for the instance-set which satisfied the query.

OTHER NOTES: Implementation of the CLIPS function do-for-instance.

QueryFindAllInstances

PURPOSE: Groups all instance-sets which satisfy a query into a
multifield variable.

ARGUMENTS: A data object buffer to hold the multifield result.

OTHER NOTES: Implementation of the CLIPS function find-all-instances.

400 Instance-Set Queries Module

QueryFindInstance

PURPOSE: Groups the first instance-set which satisfies a query into a
multifield variable.

ARGUMENTS: A data object buffer to hold the multifield result.

OTHER NOTES: Implementation of the CLIPS function find-instance.

ReleaseTraversalID

PURPOSE: The last allocated class hierarchy traversal id is released for
later reuse.

OTHER NOTES: the internal integer variable CTID is merely decremented.

SetTraversalID

PURPOSE: This function is used when recursively examining classes to
mark which ones have already been visited. This is to avoid
examining any classes more than once due to multiple
inheritance.

ARGUMENTS: 1) A class's hierarchy traversal map.
2) The traversal id to mark as used.

OTHER NOTES: Implemented as a preprocessor macro in insquery.h.

The bit corresponding to the id is set in the class's traversal
map. Uses the setbit function.

SetupQuery

PURPOSE: Support routine for SetupObjectSystem in the Class
Commands Module which defines all functions and
commands for instance-set queries.

OTHER NOTES: Initialization differs between standard and run-time
configurations.

TestTraversalID

PURPOSE: This function is used when recursively examining classes to
test if a particular class has already been visited. This is to
avoid examining any classes more than once due to multiple
inheritance.

ARGUMENTS: 1) A class's hierarchy traversal map.
2) The traversal id test.

CLIPS Architecture Manual 401

OTHER NOTES: Implemented as a preprocessor macro in insquery.h. Uses
the testbit function.

INTERNAL FUNCTIONS

AddSolution

PURPOSE: Support routine for TestEntireClass which takes the most
recently found instance-set which satisfies the query (given
by the "solutions" field of the query core) and adds it to a list
of instance-sets which have all satisfied the query.

OTHER NOTES: This function is only called by TestEntireClass for query
functions which require all the solutions to be grouped:
QueryFindAllInstances and
DelayedQueryDoForAllInstances.

The set of solutions is stored as a list of arrays of instance
addresses. Each array in the list is an instance-set which
satisfies the query, and each element in the array is the
address of an instance that positionally matches the
respective instance-set member variable. However, each
array holds one extra element to be used as a pointer to the
next instance-set.

DeleteQueryClasses

PURPOSE: Support routine for all the query functions which deallocates
the list of lists of classes which form an instance-set
template.

ARGUMENTS: A pointer to an instance-set template.

OTHER NOTES: The "busy" counts for the classes in the restriction lists are
decremented.

DetermineQueryClasses

PURPOSE: Support routine for all the query functions which creates a
series of query restriction classes to form an instance-set
template.

ARGUMENTS: 1) A series of expressions representing the class restrictions
for the instance-set members. Each class restriction list is
separated by the special symbol expression
QUERY_DELIMITER_SYMBOL.
2) The name of the calling function.
3) An integer buffer for the number of instance-set member

402 Instance-Set Queries Module

variables (each member of the set can have multiple class
restrictions).

RETURNS: A pointer to the first instance-set template node, or NULL on
errors.

FindQueryCore

PURPOSE: Support routine for GetQueryInstance and
GetQueryInstanceSlot which finds a particular query core
in the stack of cores for nested instance-set query functions.

ARGUMENTS: An integer indicating the number instance-set query
functions which nest the core of the one of interest.

RETURNS: A pointer to the appropriate query core.

OTHER NOTES: A nesting depth of 0 gets the core directly from the
QueryCore variable. Greater depths access the variable
QueryCoreStack in a top-down fashion.

FormChain

PURPOSE: Support routine for DetermineQueryClasses which
creates a new class pointer restriction node(s) to be added
to a class restriction list in the instance-set template.

ARGUMENTS: 1) The name of the calling function.
2) A data object holding the symbolic name of a class or a
multifield which fields are all symbolic names of classes.

RETURNS: A pointer to a instance-set template node, or NULL on errors.

OTHER NOTES: The "busy" counts for the class(es) in the restriction list is
incremented.

IsQueryFunction

PURPOSE: Support routine for ReplaceInstanceVariables which
determines if an action in an instance-set query function is a
call to another nested instance-set query function. If it is, then
all instance-set member variable references in the nested
query function will reference a core with an index one
greater than the one currently being parsed.

ARGUMENTS: A pointer to an action expression.

RETURNS: A non-zero integer if the expression is a call to one of the
following functions: AnyInstances, QueryFindInstance,
QueryFindAllInstances, QueryDoForInstance,

CLIPS Architecture Manual 403

QueryDoForAllInstances or
DelayedQueryDoForAllInstances. Otherwise, zero will
be returned.

ParseQueryAction

PURPOSE: Parses do-for-instance, do-for-all-instancesand
delayed-do-for-all-instances function calls into a series
of expressions that can later be evaluated by
EvaluateExpression.

ARGUMENTS: 1) An expression node containing the function call.
2) The logical name of the input source.

RETURNS: The top of series of expressions representing the function
call, or NULL on errors.

OTHER NOTES: This special function parser is required because these
functions do not follow the standard format of CLIPS
functions, e.g. instance-set template member variable's class
restrictions would like function calls to the standard CLIPS
function parser.

(<function> (<instance-set member>+)
<query> <action>)
<instance-set member> ::= (<variable> <class>+)

is parsed to the following:

Query
Expression

Function

• • •

NEXT-
ARG

A
R
G
-

L
IS

T

Action
Expression

Member 1
Class 1

Member 1
Class 2

QUERY
DELIMITER
STMBOL

NEXT-
ARG

NEXT-
ARG

• • •
Member 2
Class 1

Member 2
Class 2

QUERY
DELIMITER
STMBOL

NEXT-
ARG

NEXT-
ARG

• • •

NEXT-
ARG

NEXT-
ARG

NEXT-
ARG

404 Instance-Set Queries Module

ParseQueryActionExpression

PURPOSE: Support routine for ParseQueryAction which parses the
distributed action for an instance-set query function.

ARGUMENTS: 1) A series of expressions that represent the parsed form of
the instance-set query function so far.
2) The logical name of the input source.
3) A series of expressions (generated by
ParseQueryRestrictions) listing the names of the
instance-set member variables.

RETURNS: A non-zero integer if the action was parsed successfully,
zero otherwise.

OTHER NOTES: A check is made to insure that no attempts are made in the
action to rebind any instance-set member variables.

ParseQueryNoAction

PURPOSE: Parses any-instancep, find-instanceand
find-all-instances function calls into a series of
expressions that can later be evaluated by
EvaluateExpression.

ARGUMENTS: 1) An expression node containing the function call.
2) The logical name of the input source.

RETURNS: The top of series of expressions representing the function
call, or NULL on errors.

OTHER NOTES: This special function parser is required because these
functions do not follow the standard format of CLIPS
functions, e.g. instance-set template member variable's class
restrictions would like function calls to the standard CLIPS
function parser.

(<function> (<instance-set member>+)
<query>)
<instance-set member> ::= (<variable> <class>+)

CLIPS Architecture Manual 405

is parsed to the following:

Query
Expression

Function

• • •

A
R
G
-

L
IS

T

Member 1
Class 1

Member 1
Class 2

QUERY
DELIMITER
STMBOL

NEXT-
ARG

NEXT-
ARG

• • •Member 2
Class 1

Member 2
Class 2

QUERY
DELIMITER
STMBOL

NEXT-
ARG

NEXT-
ARG

• • •

NEXT-
ARG

NEXT-
ARG

NEXT-
ARG

ParseQueryRestrictions

PURPOSE: Support routine for ParseQueryAction and
ParseQueryNoAction which instance-set template for a
query function, i.e instance-set member variables and their
class restrictions.

ARGUMENTS: 1) A series of expressions that represent the parsed form of
the instance-set query function so far.
2) The logical name of the input source.
3) A buffer to use for scanned tokens.

RETURNS: A series of expressions listing the names of the instance-set
member variables.

OTHER NOTES: A check is made to insure there are no duplicate
instance-set member variables.

In addition to generating the list for the return value, the class
restriction lists are attached to the main expression
(argument #1) as described in ParseQueryAction and
ParseQueryNoAction.

ParseQueryTestExpression

PURPOSE: Support routine for ParseQueryAction and
ParseQueryNoAction which parses the test expression
for an instance-set query function.

ARGUMENTS: 1) A series of expressions that represent the parsed form of
the instance-set query function so far.
2) The logical name of the input source.

406 Instance-Set Queries Module

RETURNS: A non-zero integer if the test expression was parsed
successfully, zero otherwise.

OTHER NOTES: A check is made to insure that no binds occur in the test.

PopQueryCore

PURPOSE: Support routine for all the instance-set query functions which
pops the first core of the query core stack
(QueryCoreStack) and assigns it to the current query core
(QueryCore).

OTHER NOTES: This routine is called at the end of every instance-set query
function.

PushQueryCore

PURPOSE: Support routine for all the instance-set query functions which
pushes the current query core (QueryCore) onto the query
core stack (QueryCoreStack).

OTHER NOTES: This routine is called at the beginning of every instance-set
query function.

ReplaceInstanceVariables

PURPOSE: Support routine for ParseQueryAction and
ParseQueryNoAction which recursively replaces
instance-set member variable references in the test and
action expressions of an instance-set query function with
appropriate calls to the internal functions
GetQueryInstance and GetQueryInstanceSlot.

ARGUMENTS: 1) A series of expressions (generated by
ParseQueryRestrictions) listing the names of the
instance-set member variables.
2) The test or action expression in which to replace variable
references.
3) An integer flag indicating whether to accept direct slot
references (1) or not (0).
4) The number of instance-set query functions which nest the
one currently being parsed.

OTHER NOTES: If a recursive call is made on an expression which is another
instance-set query function call, that recursive call will be
passed argument #4 plus one. This recursive "counting"
mechanism will correspond one-to-one with the
PushQueryCore and PopQueryCore calls when the
instance-set query function is actually executed. This is why

CLIPS Architecture Manual 407

argument #4 is a valid index for which query core to select at
run-time from the stack.

ReplaceSlotReference

PURPOSE: Support routine for ReplaceInstanceVariables which
replaces direct slot references with calls to the internal
function GetQueryInstanceSlot.

ARGUMENTS: 1) A series of expressions (generated by
ParseQueryRestrictions) listing the names of the
instance-set member variables.
2) The test or action expression in which to replace variable
references.
3) The address of the CLIPS function
(query-instance-slot).
4) The number of instance-set query functions which nest the
one currently being parsed.

TestEntireChain

PURPOSE: Support routine for QueryFindAllInstances,
QueryDoForAllInstances and
DelayedQueryDoForAllInstances which examines all
the instances of classes (and their subclasses) in a class
restriction list of a particular member variable in the
instance-set template.

ARGUMENTS: 1) A pointer into the instance-set template indicating the
class restriction list for the instance-set member variable
being tested. The "next" link of the top node points to the top
node of the next member variable's class restriction list, and
the "chain" links form the class restriction list for this member
variable.
2) The relative integer index of the instance-set member
variable being tested.

OTHER NOTES: This function is mutually recursive with TestEntireClass.

The following is a synopsis of TestEntireChain:

1. Set the AbortQuery flag

2. For all classes in the class restriction list do:
2a. Clear the AbortQuery flag.
2b. Get a unique class traversal id.
2c. Call TestEntireClass for the class.
2d. Release the traversal id.

408 Instance-Set Queries Module

2e. Abort if this member variable or any after it did not have
any instances which satisfied the query.

TestEntireClass

PURPOSE: Support routine for TestEntireChain which examines all
the instances of a class and its subclasses.

ARGUMENTS: 1) A class hierarchy traversal id to use when recursively
examining subclasses.
2) A pointer to the class.
3) A pointer into the instance-set template indicating the
class restriction list for the instance-set member variable
being tested.
4) The relative integer index of the instance-set member
variable being tested.

OTHER NOTES: This function is self-recursive and mutually recursive with
TestEntireChain. The self-recursion is to test subclasses.
TestEntireClass calls TestEntireChain until it reaches
the last class restriction list. In this manner, all permutations
are examined, varying the the instances matching the last
member variable first (as described in the Basic
Programming Guide).

The following is a synopsis of TestEntireClass:

1. If this class has already been examined for this traversal
id, immediately return. Otherwise, set the traversal id bit for
this class.

2. Save and set the MaintainGarbageInstances flag (see
the Instance Functions Module) to insure that instance links
can be followed even in the event an instance is deleted as
the result of an instance-set query or action.

3. For every instance of this class do:
3a. Place this instance in the appropriate position in the
solution corresponding to the instance-set member variable
being tested.
3b. If there are no instance-set member variables remaining
to be tested on this pass through the template, go to 3d.
Otherwise, call TestEntireChain for the class restriction list
of the next instance-set member variable. Go to the
beginning of 3.
3d. A complete instance-set has been generated. Evaluate
the query expression. If it is satisfied, either evaluate the
query action or add the instance-set to the list of solutions
(see AddSolution), depending on which instance-set

CLIPS Architecture Manual 409

query function is being executed.

4. Restore the MaintainGarbageInstances flag.

5. Call TestEntireClass for every subclass of the current
class.

TestForFirstInChain

PURPOSE: Support routine for AnyInstances, QueryFindInstance
and QueryDoForInstance which examines all the
instances of classes (and their subclasses) in a class
restriction list of a particular member variable in the
instance-set template.

ARGUMENTS: 1) A pointer into the instance-set template indicating the
class restriction list for the instance-set member variable
being tested. The "next" link of the top node points to the top
node of the next member variable's class restriction list, and
the "chain" links form the class restriction list for this member
variable.
2) The relative integer index of the instance-set member
variable being tested.

RETURNS: A non-zero integer if an instance was found for the
instance-set member variable which was part of an
instance-set which satisfied the query.

OTHER NOTES: This function is mutually recursive with the
TestForFirstInstanceInClass.

The following is a synopsis of TestForFirstInChain:

1. Set the AbortQuery flag

2. For all classes in the class restriction list do:
2a. Clear the AbortQuery flag.
2b. Get a unique class traversal id.
2c. Call TestForFirstInstanceInClass, and, if it indicates
success, release the traversal id and return success.
2d. Release the traversal id.
2e. Return failure if this member variable or any after it did
not have any instances which satisfied the query.

3. Return failure.

410 Instance-Set Queries Module

TestForFirstInstanceInClass

PURPOSE: Support routine for TestForFirstInChain which examines
all the instances of a class and its subclasses.

ARGUMENTS: 1) A class hierarchy traversal id to use when recursively
examining subclasses.
2) A pointer to the class.
3) A pointer into the instance-set template indicating the
class restriction list for the instance-set member variable
being tested.
4) The relative integer index of the instance-set member
variable being tested.

RETURNS: A non-zero integer if an instance of the class was part of an
instance-set which satisfied the query.

OTHER NOTES: This function is self-recursive and mutually recursive with
TestForFirstInChain. The self-recursion is to test
subclasses. TestForFirstInstanceInClass calls
TestForFirstInChain until it reaches the last class
restriction list. In this manner, all permutations are examined,
varying the the instances matching the last member variable
first (as described in the Basic Programming Guide).

The following is a synopsis of TestForFirstInClass:

1. If this class has already been examined for this traversal
id, immediately return. Otherwise, set the traversal id bit for
this class.

2. Save and set the MaintainGarbageInstances flag (see
the Instance Functions Module) to insure that instance links
can be followed even in the event an instance is deleted as
the result of an instance-set query or action.

3. For every instance of this class do:
3a. Place this instance in the appropriate position in the
solution corresponding to the instance-set member variable
being tested.
3b. If there are no instance-set member variables remaining
to be tested on this pass through the template, go to 3d.
Otherwise, call TestForFirstInChain for the class
restriction list of the next instance-set member variable, and,
if success is returned, go to 4. Go to the beginning of 3.
3d. A complete instance-set has been generated. Evaluate
the query expression. If it is satisfied, either evaluate the
query action or do nothing, depending on which instance-set
query function is being executed.

CLIPS Architecture Manual 411

4. Restore the MaintainGarbageInstances flag.

5. Return success if an instance-set which satisfied the query
was successfully completed within the step 3 loop.

6. Call TestForFirstInClass for every subclass of the
current class and return success immediately if any return
success.

7. Return failure.

412 Instance-Set Queries Module

Definstances Module

The Definstances Module (defins.c) provides the capability needed to implement the
definstances construct. For a description of the definstances construct, see the Basic
Programming Guide. The definstances construct capability, along with the other
features of the CLIPS Object-Oriented Language (COOL), can be removed by using
the appropriate compile flag in the setup header file. The definstances data structure is
summarized in the following diagram:

Name (Symbol Pointer)

Busy Count (int)

Make-Instance Call (Expression Pointer)

Binary Load/Save Index (long int)

Previous Link (Definstances Pointer)

Next Link (Definstances Pointer)

Pretty-Print Form (array of char)

The internal data structure of a
definstances consists of a symbolic
name and a series of expressions
forming a call to make-instance.
A non-zero busy count for a
definstances indicates that
instances in that definstances are
currently being created, and it is
not safe to delete the definstances.
Other fields in the structure
include: the pretty-print form, an
index for use in binary load/save
and the construct compiler and
pointers for double links to other
definstances.

GLOBAL VARIABLES

DefinstancesList

PURPOSE: A pointer to the first node in the list of all currently defined
definstances.

INTERNAL VARIABLES

DefinstancesListBottom

PURPOSE: A pointer to the first node in the list of all currently defined
definstances.

GLOBAL FUNCTIONS

ClearDefinstances

PURPOSE: Used by the clear command to remove all currently defined
definstances.

CLIPS Architecture Manual 413

RETURNS: The integer zero if not all definstances were successfully
cleared, non-zero otherwise.

CmdListDefinstances

PURPOSE: Lists all the currently defined definstances.

OTHER NOTES: Implementation of the CLIPS function list-definstances.

CmdUndefinstances

PURPOSE: Removes a definstances.

OTHER NOTES: Implementation of the CLIPS function undefinstances.

Embedded Access for
Definstances

PURPOSE: The following functions are provided for embedded access
and are documented in the Advanced Programming Guide:
DeleteDefinstances, FindDefinstances,
GetDefinstancesName, GetDefinstancesPPForm,
GetNextDefinstances, IsDefinstancesDeletable and
ListDefinstances.

PPDefinstances

PURPOSE: Displays the pretty-print form of the definstances specified by
the CLIPS supplied argument.

OTHER NOTES: Implementation of the CLIPS function ppdefinstances.

SetDefinstancesList

PURPOSE: Initializes the global variables DefinstancesList and
DefinstancesListBottom to point to the top and bottom
respectively of the given list of definstances.

ARGUMENTS: A pointer to the top of a list of definstances.

OTHER NOTES: This function is used only in a run-time version of CLIPS.

SetupDefinstances

PURPOSE: Support routine for SetupObjectSystem in the Class
Commands Module which defines all functions and
commands for the definstances construct. Sets up all
necessary load, clear, save and reset interfaces.

414 Definstances Module

OTHER NOTES: Initialization differs between standard and run-time
configurations.

INTERNAL FUNCTIONS

FindDefinstancesBySymbol

PURPOSE: Determines the address of a specified definstances.

ARGUMENTS: A pointer to a symbol.

RETURNS: A pointer to a definstances.

InitializeDefinstances

PURPOSE: Used by the reset command to delete all existing instances
of user-defined classes (via delete messages) and create
the ones in definstances (via make-instance calls).

ParseDefinstances

PURPOSE: Used by the load command to parse a definstances.

ARGUMENTS: The logical name of the input source.

RETURNS: The integer zero if there are no parsing errors, non-zero
otherwise.

ParseDefinstancesName

PURPOSE: Support routine for ParseDefinstances which parses the
definstances name and an optional comment.

ARGUMENTS: The logical name of the input source.

RETURNS: The symbolic name of the definstances, NULL on errors.

RemoveDefinstances

PURPOSE: Removes a definstances.

ARGUMENTS: A pointer to a definstances.

RETURNS: A no-zero integer if the definstances was successfully
deleted, zero otherwise.

CLIPS Architecture Manual 415

SaveDefinstances

PURPOSE: Used by the save command to write out the pretty-print
forms of all the currently defined definstances.

ARGUMENTS: The logical name of the output destination.

416 Definstances Module

Object Construct Compiler Interface Module

The Object Construct Compiler Interface (objcmp.c) Module provides the interface for
COOL to the constructs-to-c command.

CLIPS Architecture Manual 417

Object Binary Load/Save Interface Module

The Object Binary Load/Save Interface (objbin.c) Module provides the interface for
COOL to the bload/bsave commands.

CLIPS Architecture Manual 419

Main Module

The Main Module (main.c) contains the only functions which should have to be
modified to add extensions or embed CLIPS under normal circumstances.

GLOBAL VARIABLES

None.

LOCAL VARIABLES

None.

GLOBAL FUNCTIONS

main

PURPOSE: Startup function for CLIPS. Under normal operation, this
function initializes CLIPS, checks for command line
arguments, then calls the CommandLoop function. See
the Advanced Programming Guide for details on embedding
CLIPS.

UserFunctions

PURPOSE: Called during CLIPS initialization. Allows users to insert their
own function definition calls. See the Advanced
Programming Guide for details on integrating CLIPS.

INTERNAL FUNCTIONS

None.

CLIPS Architecture Manual 421

Index

(df-getbind) 283 AddAbortBloadFunction 245
(df-runknown) 283 AddActivation 157, 163
(df-wildargs) 283 AddAfterBloadFunction 245
(gnrc-bind) 292 AddBeforeBloadFunction 246
(gnrc-runknown) 293 AddBinaryItem 98, 107, 204, 214, 234,

238(gnrc-wildargs) 292
(hndgetbind) 373 AddBindName 50
(hndunknown) 375 AddBloadFunctionToList 247
(hndwildargs) 375 AddBloadReadyFunction 246 , 247
(query-instance-slot) 400 , 408 AddBreakpoint 163
(query-instance) 399 AddClass 334 , 339, 340, 341, 342, 371,

383* 51, 263
** 273 AddCleanupFunction 77 , 84
+ 51, 263 AddClearBloadReadyFunction 246
- 51, 263 AddClearFunction 70 , 285, 303, 327
/ 51, 263 AddCodeGeneratorItem 98, 107, 204,

214, 252, 254< 51, 263
<= 51, 263 AddConstruct 70
<> 51, 263 AddCPFunction 84
= 51, 263 AddDeffunction 284
> 51, 263 AddDefglobal 107
>= 51, 263 AddDefrule 199
Abort 28 , 29 AddDeftemplate 208
AbortBload 247 AddDouble 20 , 249
AbortBloadFunctions 244 , 245 AddEphemeralFloat 25
AbortExit 29 AddEphemeralInteger 25
AbortQuery 397 , 408, 410 AddEphemeralSymbol 25
abs 267 AddFact 86 , 87, 191
ABSTRACT_RLN 319 AddFunctionParser 42
ACCESS_BIT 319 AddGeneric 301 , 308
acos 273 AddGenericMethod 306
acosh 273 AddHashDeftemplate 213
acot 273 AddHashedFact 86
acoth 273 AddHashFunction 42
acsc 273 AddLogicalDependencies 191 , 193
acsch 273 AddLong 20 , 249
ActivateRouter 29 AddMethod 302 , 306
ActivationBasis 162 AddParameter 294
active instance 347, 362, 371, 382 AddPeriodicFunction 77 , 84
ActualPoolSize 9 AddResetFunction 70

CLIPS Architecture Manual 423

AddressesToStrings 76 AssertSlotsMultiplyDefined 220
AddRouter 29 AssertString 87
AddRunFunction 163 AssignmentParse 113
AddSaveFunction 71 atan 273
AddSingleMatch 181 atanh 273
AddSolution 402 , 409 AtomDeinstall 78
AddSymbol 18, 20 , 250 AtomInstall 79
AddSystemClass 338 , 339 AutoFloatDividend 263
AddSystemHandlers 371 , 376 batch 277
AddTerminatorJoin 199 BDefglobalArray 101
AddToClassList 339 BDefglobalPointersArray 101
AddToDependencyList 191 BeforeBloadFunctions 244 , 245, 246
AddToSegmentList 87 BeforeClearFunction 69 , 71, 73
AddWatchItem 78 BeforeResetFunction 69 , 73
AdjacentReduction 119 BEGIN_TRACE 280 , 301 , 381
AdjustFieldPosition 182 BIG_PRIME 334 , 359
AfterBloadFunctions 244 , 245 BinaryFileHandle 244 , 247, 248, 249
Agenda 161, 162, 163, 164, 166, 167,

168, 169, 170, 205
BinaryFP 245 , 247, 248, 249
BinaryPrefixID 241, 243

AgendaChanged 161 , 164, 167 BinaryRefNum 245 , 247, 248
AllocateBlock 15 BinaryVersionID 241, 243
AllocateChunk 16 bind 261
AllVariablesInPattern 132 bind list 280, 282, 283, 287, 290, 292,

297, 302, 304, 370, 373, 378, 382,
388, 391

ALL_QUALIFIER 347
analysis.c 2, 127
AnalysisExpressions 121 , 122, 123, 124,

125
BindList 57 , 59
BindParse 50

and 51, 136, 158, 263 Bit Access Functions 398
and CE 109, 113, 114, 117 BITS_PER_BYTE 397
any-instancep 398 , 405 bload 3, 95, 97, 98, 101, 104, 107, 203,

204, 207, 208, 211, 214, 238, 239,
243 , 244, 245, 246, 247, 249, 250,
277 , 280, 285, 313, 419

AnyInstances 398 , 410
AppendCommandString 65
AppendNToString 78
AppendStrings 39 bload.c 3, 243
AppendToString 78 BloadActive 245 , 247
ArgumentParse 42 , 43 BloadCommand 246
asec 273 Bloaded 247
asech 273 BloadExpressions 247
asin 273 BloadReadyFunctions 245 , 246
asinh 273 BlockInfoSize 8
assert 2, 3, 53, 54, 93 , 217, 220 BlockMemoryInitialized 8
AssertParse 50 break 261 , 282, 304, 391
AssertRetractInProgress 85 BreakContext 261

424 Index

BreakFlag 261 CheckHandlerBindList 376
browse-classes 320 CheckInstanceAndSlot 353
BrowseClass 322 , 327 CheckLHSSlotTypes 230
BrowseClassesCmd 320 CheckMethodExists 294
bsave 3, 97, 98, 104, 107, 203, 204, 207,

211, 214, 233 , 238, 239, 240, 241,
242, 277 , 285, 313, 419

CheckMultifieldSlotInstance 353
CheckMultifieldSlotModify 358, 360 , 362
CheckPattern 132

bsave.c 3, 233 , 243 CheckRHSSlotTypes 220
BsaveAllExpressions 240 CheckSlotAllowedValues 208 , 218
BsaveCommand 239 CheckSlotConflicts 225
BsaveExpression 239 , 240 CheckSlotRange 208 , 218
build 271 CheckSlotType 209 , 218
build.c 2, 143 CheckTemplateFact 218
BuildDefaultSlots 366 CheckTwoClasses 324
BuildInstance 360 , 366, 367 CheckVariables 131
BuildNetworkExpressions 132 ChunkInfoSize 8
BuildPartialOrders 339 , 342 class 293 , 315 , 329 , 348
BuildRHSAssert 53 , 98 class-abstractp 322
BuildSubclassLinks 339 class-existp 322
call-next-handler 381 , 387 class-message-handler-existp 320
call-next-method 303 , 388 class-message-handlers 320
CallClearFunctions 71 class-slot-existp 320
CallDeffunction 280, 281 , 285 class-slots 321
CallHandlers 382, 384, 388 , 389, 391,

392
class-subclasses 321
class-superclasses 321

CallNextHandler 381 , 384, 388 , 389, 391 class precedence list 330 , 336
CallNextMethod 302 classcom.c 4, 315
CARDINALITY_BIT 319 ClassExistError 334
CatchControlC 5 classfun.c 4, 329
ChangesToInstances 357 classfun.h 333
ChangeToFactList 85 , 89, 92 ClassHandlersCmd 320 , 325
ChangeToGlobals 101 , 103, 106 ClassHasHandler 320
CheckArgListParse 51 ClassHasSlot 320 , 324
CheckClass 324 ClassInfoFnxArgs 325
CheckClassAndSlot 324 ClassList 313, 317, 332 , 333, 338
CheckCurrentMessage 382 ClassListBottom 334 , 338
CheckDeffunctionCall 285 ClassSlotsCmd 321 , 325
CheckExpression 130 ClassSubclassesCmd 325
CheckFactAddress 132 ClassSuperclassesCmd 321 , 325
CheckForPrimableJoins 199 ClassTable 317, 333
CheckGenericExists 294 CLASS_RLN 347
CheckHandlerAgainstSlots 371 CLASS_TABLE_HASH_SIZE 333
CheckHandlerArgCount 389 CleanupInstances 361 , 367

CLIPS Architecture Manual 425

clear 92, 97, 104, 198, 207, 211, 238, 245,
261 , 285, 303, 327, 413

CmdPPDeffunction 282
CmdUndefclass 321 , 326

clearbit 398 , 400 CmdUndeffunction 282
ClearBload 248 CmdUndefgeneric 291
ClearBloadReadyFunctions 245 , 246 CmdUndefinstances 414
ClearCLIPS 71 CmdUndefmessageHandler 372
ClearDefclasses 335 , 340, 383, 386 CmdUndefmethod 291
ClearDeffacts 98 CollectArguments 43
ClearDeffunctions 285 CombineExpressions 137
ClearDefgenerics 303 CommandLoop 65 , 421
ClearDefglobals 102 CommandString 64 , 65, 66, 67
ClearDefinstances 413 commline.c 2, 63
ClearDefmethods 303 CompactActions 53
ClearDefrules 195 CompareBindings 168
ClearDeftemplates 209 CompleteCommand 63, 65
ClearLowerBetaMemory 159 COMPOSITE_BIT 319
ClearParsedBindNames 49 CONCRETE_RLN 319
ClearPatternMatches 182 ConjunctiveRestrictionParse 113
ClearRuleFromAgenda 163 ConnectedPatternParse 113
CLIPSDeleteInstance 348 conscomp.c 251
CLIPSFalseSymbol 18 , 23, 24 conserve-mem 267
CLIPSFunctionCall 58 ConserveMemory 8 , 11, 14
CLIPSGetSlot 348 , 353 constant 135, 136, 261
CLIPSInputCount 27 constant.h 298, 307, 313 , 316 , 332 , 333 ,

338CLIPSMakeInstance 348 , 353
CLIPSPutSlot 348 , 353 ConstantExpression 43
CLIPSSendMessage 385 , 391, 392 constrct.c 2, 3, 41, 69
CLIPSSystemError 79 ConstructJoins 145
CLIPSTestSlot 348 , 353 constructs-to-c 285, 311, 417
CLIPSTrueSymbol 18 , 23, 24 constructs-to-c 3, 97, 98, 104, 107, 203,

204, 207, 211, 214, 251 , 254, 257CLIPSUnmakeInstance 348
close 75, 265 ConstructsToCCommand 254
CloseAllFiles 29 ConstructsToCCommandDefinition 254
CloseFile 29 CopyClassLinks 339
CloseStringDestination 29 CopyExpression 43
CloseStringSource 29 CopyMemory 9
CmdListDefclasses 321 CopyNodes 118
CmdListDeffunctions 282 CopyPartialMatch 182
CmdListDefgenerics 291 CopyPPBuffer 36
CmdListDefinstances 414 CopySegmentMarkers 175
CmdListDefmessageHandlers 372 CopyToken 36
CmdListDefmethods 291 CoreInitializeInstance 361 , 362, 363, 364,

366CmdListInstances 347

426 Index

cos 273 DecrementInstanceCount 362
cosh 273 DecrementInstanceDepth 361
cot 273 DecrementIntegerCount 21
coth 273 DecrementSymbolCount 21
CountArguments 43 DefaultGetNextEvent 67
CountJoins 121 DefaultOutOfMemoryFunction 9
CountPatternFields 121 defclass 315 , 329
CountSubclasses 325 Defclass Constants 319
CreateFact 87 Defclass Keywords 319
CreateInitialFactDeffacts 95 deffacts 54
CreateInitialPattern 113 deffacts.c 2, 95
CreateMultifield 87 DeffactsArray 95
CreateRawInstance 348 , 360 deffnctn.c 3, 279
CreateReadStringSource 33 deffunction 261, 279
CreateSystemClasses 338, 339, 340 Deffunction Bload/Bsave Functions 285
crsv-trace-off 277 Deffunction Constructs-To-C Functions

285crsv-trace-on 277
csc 273 deffunction parameter array 280, 281,

282, 286csch 273
CTID 397, 398 , 400, 401 Deffunction Trace Strings 280
CurrentCore 381 , 382, 388 deffunctionArray 280
CurrentDeffunctionName 280 , 282 DeffunctionError 280
CurrentEphemeralCountMax 76 DeffunctionGetBind 280, 282
CurrentEphemeralSizeMax 76 defgeneric 289
CurrentEvaluationDepth 57 DefglobalArray 101, 102, 105, 107
CurrentExpression 58 DefglobalPointersArray 101
CurrentGeneric 299 , 304 DefglobalsArray 103
CurrentInstance 359 , 366 defglobl.c 2, 101
CurrentMessageFrame 370, 379 , 389 DefinedSlots 225 , 227
CurrentMessageName 379 , 391 DefineFunction 42, 45, 58 , 90, 93, 205,

251, 255, 257, 258, 261, 263, 265,
267, 269, 271, 273, 275, 277

CurrentMessageSize 379
CurrentMethod 299
CurrentPatternFact 173 , 174 defins.c 4, 413
CurrentPatternInfo 121 , 125 definstances 413
CurrentPatternMarks 173 , 174 DefinstancesList 413 , 414
CurrentTimetag 161 DefinstancesListBottom 413 , 414
DeactivateRouter 30 defmessage-handler 369 , 379
DeallocateMarkedHandlers 377, 383 ,

387
defmethod 289
defrule.c 2, 195

DeclarationParse 114 DefruleArray 203
DecrementFactCount 87 DefruleBinarySetup 204
DecrementFloatCount 20 DefruleCommands 198, 205
DecrementIndentDepth 37 DefruleHasBreakpoint 163

CLIPS Architecture Manual 427

DeftempateHashTable 213, 214, 215 DeleteQueryClasses 402
DeftemplateArray 207 , 208 DeleteRouter 30
DeftemplateCommands 211 DeleteSlots 335
DeftemplateError 225 DeleteSublink 340
DeftemplateHashTable 207 , 213, 214 DeleteTempRestricts 294
DeftemplateLHSParse 230 DELETE_STRING 370
DeftemplatePattern 130 DELETE_SYMBOL 370
deftmcom.c 3, 207 DeletionsAllowed 195
deftmfun.c 3, 217 DeletionsLegal 95
deftmlhs.c 3, 229 dependencies 93
deftmpsr.c 3, 225 DependencyList 190 , 191, 192
deg-grad 273 dependents 93
deg-rad 273 describe-class 321
DeinstallDeftemplate 214 DescribeClass 322 , 325
DeinstallExpression 47, 214 DescribeClassCmd 321 , 324, 326
delayed-do-for-all-instances 396, 399 ,

404
DestroyAllInstances 347
DestroyHandlerLinks 383

DelayedQueryDoForAllInstances 399 ,
402, 408

DestroyMethodLinks 306
DestroyPPBuffer 37

DELETE 358 , 360 DetachAssociatedFactDependencies 191,
192, 193delete-instance 347 , 377

DeleteActivation 163 DetachAssociatedPMDependencies 192,
193DeleteClass 340 , 341, 387

DeleteClassLinks 335 DetachJoins 145 , 201
DeleteClassUAG 335 , 340 DetachPattern 146
DeleteDefclass 322 DetermineQueryClasses 402 , 403
DeleteDeffacts 95 DetermineRestrictionClass 306
DeleteDeffunction 284 DFBot 281 , 284
DeleteDefgeneric 291 DFCount 281
DeleteDefinstances 414 DFInputToken 281
DeleteDefmessageHandler 372 , 383, 386 DFList 279, 281 , 284
DeleteDefmethod 291 DFParamArray 281 , 286
DeleteDefrule 195 DFParamSize 281
DeleteDeftemplate 209 DFRtnUnknown 280, 283
DeletedFiringRule 161 DFWildargs 280, 283
DeletedRuleHadBreakpoint 195 DIRECT 334
DeleteHandler 383, 385, 386 direct-mv-delete 373
DeleteInstance 347 direct-mv-insert 374
DeleteMethodInfo 303 direct-mv-replace 374
DeleteNamedDeffacts 96 DirectMessage 384 , 391
DeleteNamedDefrule 196 DispatchMessage 379 , 384 , 391
DeleteNamedDeftemplate 209 DisplayCore 385 , 389, 392
DeletePartialMatches 178 DisplayGenericCore 307

428 Index

DisplayHandlersInLinks 325 , 388 EphemeralItemCount 76
DisplayPrimaryCore 389 , 392 EphemeralItemSize 76
div 263 EphemeralSymbolList 17, 18, 19 , 21, 25,

26do-for-all-instances 396, 400 , 404
do-for-instance 396, 400 , 404 eq 135, 136, 263
DoComment 67 eqfield 135
DoesClassExist 322 eqvar 135
DoesInstanceExist 347 eq_field 136, 261
DoesSlotExist 348 , 353 eq_vars 158
DoString 67 ErrorAlignment 74
DoWhiteSpace 67 eval 271
dribble-off 277 EvaluateAndStoreInDataObject 358 ,

362 , 368dribble-on 277
Drive 149, 150, 157 EvaluateDefaultSlots 325 , 362, 365
drive.c 2, 149 EvaluateDFParameters 285
DriveRetractionList 178 , 180 EvaluateExpression 58 , 158, 175, 184,

281, 304, 384DriveRetractions 177, 178, 180
drulebin.c 2, 203 EvaluateGenericParameters 307
DumpExpression 255, 256 EvaluateInstanceSlots 362, 366
duplicate 3, 201, 207 , 209, 213, 214, 217,

218, 220, 221
EvaluateJoinExpression 157, 158
EvaluateMessageParameters 389

DuplicateCommand 209 EvaluatePatternExpression 175
DuplicateModifyCommand 209, 212, 214 ,

215
EvaluateSalience 196
EvaluatingTopLevelCommand 64

DuplicateParameters 294 evaluation depth 282, 304, 345, 392
DuplicateParse 218 EvaluationError 58 , 59, 60, 218, 219
DuplicateSegment 88 EvaluationExpression 108
DynamicDeftemplateChecking 207 , 211,

213
evaluatn.c 2, 41, 57 , 75
evenp 263

Embedded Access for Defclasses 322 EventFunction 63, 64 , 65, 66
Embedded Access for Deffunctions 284 Executing 69 , 71, 74
Embedded Access for Definstances 414 ExecutingConstruct 71
Embedded Access for

Defmessage-Handlers 372 , 385
ExecutingRule 161
exit 261

Embedded Access for Generic Functions
291

ExitCLIPS 28, 30
exp 273

Embedded Access for Instances 348 ,
361

ExpandCommandString 65 , 67
ExpandStringWithChar 79

EmptyDrive 157, 159 ExpectedCountError 80
END_TRACE 280 , 301 , 381 ExpectedTypeError 80
engine.c 2, 161 ExpressionArray 243 , 245, 250
EphemeralFloatList 19 , 20, 25 ExpressionComplexity 122 , 125
EphemeralIntegerList 19 , 21, 25, 26 ExpressionContainsVariables 44

CLIPS Architecture Manual 429

ExpressionCount 238 , 239, 240, 253 FileFunctionDefinitions 277
ExpressionDeinstall 44 FilePrefix 253
ExpressionFP 253, 255, 256 find-all-instances 396, 400 , 405
ExpressionHeader 253 find-instance 401 , 405
ExpressionInstall 44 FindApplicableHandlers 379, 384, 386,

389 , 390, 391, 392ExpressionSize 44
ExpressionToCode 252, 254 FindApplicableMethods 304, 307 , 308
ExpressionVersion 253 FindApplicableOfName 385, 390
expressn.c 1, 41 FindClassSlot 335 , 386
ExtractAnds 133 FindDefclass 322
facet FindDefclassBySymbol 336

composite 342 FindDeffacts 96
default 318 FindDeffunction 284
default-dynamic 318 FindDeffunctionBySymbol 284
initialize-only 318, 358, 359 FindDefgeneric 291
local 318, 346 FindDefgenericBySymbol 303
multiple 318 FindDefglobal 102
no-inherit 334, 341 , 343 FindDefinstances 414
read-only 318, 358 FindDefinstancesBySymbol 415
read-write 318 FindDefmessageHandler 372
shared 318, 346 , 366 FindDefrule 196
single 318 FindDeftemplate 209

fact-index 93 FindFactInPartialMatch 182
factcom.c 2, 93 FindFile 30
FactCompare 88 FindFptr 30
FactDeinstall 88 , 91 FindFunction 45 , 142, 248
FactDuplication 85 , 89, 91 FindHandler 385
FactExists 88 FindHandlerNameGroup 385
FactHashTable 85 , 86, 87, 88, 90, 92 FindHandlerParameter 376
FactInstall 88 FindIndexedFact 88
FactList 85, 86, 89, 90, 91, 98 FindInstance 348
factmngr.c 2, 85 FindInstanceBySymbol 363
facts 2, 93 FindInstanceSlot 363 , 386
FalseSymbol 18, 19 FindInstanceTemplateSlot 363
FastFindFunction 248 , 249 FindISlotByName 353
FastLoadFilePointer 32 FindLogicalBind 193
FastLoadFilePtr 28 , 31, 32, 33 FindMethodByIndex 303
FastSaveFilePointer 32 FindMethodByRestrictions 304 , 308
FastSaveFilePtr 28 , 31, 32, 33 FindNeededFunctionsAndAtoms 240
fetch 275 FindParameter 286 , 295
FieldCheckTemplate 221 FindPrecedenceList 317, 336 , 339, 342
FieldConversion 133 FindPreviewApplicableHandlers 386 ,

390, 391filecom.c 3

430 Index

FindQueryCore 403 GenClose 248
FindSlot 210 GenConstant 138
FindSlotItem 210 generate.c 2, 135
FindSlotPosition 210 GenerateCode 254, 256, 257, 258, 259
FindSymbol 21 generic function 289 , 299
FindSymbolMatches 21 , 24 Generic Function Trace Codes 300
FindVariable 122 Generic Function Trace Strings 301
float 267 GenericDispatch 290 , 299 , 304 , 307
FloatArray 244 GenericInputToken 291
floatp 263 GenericList 290, 300 , 306
FloatsToCode 256 GenericListBottom 300 , 306
FloatTable 18, 19 , 20, 21, 23, 24, 25, 26,

39, 240, 241, 249, 255, 256, 257, 258,
259

GenericStackFrame 300 , 307
GenericStackSize 300
genexit 5

FloatToString 80 GenFourIntegers 138
FlushAlphaBetaMemory 183 genfree 7, 10 , 11, 13
FlushAnalysisExpressions 123 GenGetfield 138
FlushCommandString 65 GenGetvar 138
FlushGarbagePartialMatches 179 GenGetvarValue 138
FlushPPBuffer 37 GenJNColon 139
FlushSegments 89 GenJNConstant 139
FlushVariableAnalysis 123 GenJNEq 139
ForceLogicalRetractions 191 GenJNVariableComparison 140
format 265 genlongalloc 10 , 12
FormChain 403 genlongfree 11 , 14
FormInstanceTemplate 329, 340 , 341 genmemcpy 9, 11
free 10 GenOpen 248
Function0Parse 44 GenOr 140
Function1Parse 45 GenPNColon 140
Function2Parse 45 GenPNConstant 140
FunctionArray 244 GenPNEq 141
FunctionBinarySize 240 GenPNVariableComparison 141
FunctionHashTable 42 , 46, 48 genrand 5
FunctionsToCode 257 genrcbin.c 313
garbage collection 345, 357 , 358, 359 ,

361, 365, 367
genrccmp.c 3, 311
genrccom.c 3, 289

GarbageAlphaMatches 178 , 179 genrcfun.c 3, 299
GarbageFacts 86 , 91 GenRead 247
GarbagePartialMatches 178 , 179, 183 genrealloc 11
GCALL 290 genseed 5
GDDCommand 211 gensym 267
genalloc 7, 10 , 11, 12, 13 gensym* 267
GenAnd 138 GensymNumber 267

CLIPS Architecture Manual 431

gensystem 6 GetDefglobalValue 102 , 105
gentime 6 GetDefglobalValueForm 103
GenTwoIntegers 141 GetDefinstancesName 414
GenWrite 239 GetDefinstancesPPForm 414
get 374 , 378 GetDefmessageHandlerName 372
get-dynamic-deftemplate-checking 214 GetDefmessageHandlerPPForm 372
get-dynamic-deftemplate-checking 207 GetDefmessageHandlerType 372
get-fact-duplication 93 GetDefmethodDescription 292
get-strategy 205 GetDefmethodPPForm 292
get-auto-float-dividend 263 GetDefruleName 196
get-dynamic-deftemplate-checking 211 GetDefrulePPForm 196
get-incremental-reset 205 GetDeftemplateName 210
get-reset-globals 104 GetDeftemplatePPForm 210
get-salience-evaluation 205 GetDisjunctIndex 197
GetActivationName 164 GetDynamicDeftemplateChecking 211
GetActivationPPForm 164 GetEvaluationError 59
GetActivationSalience 164 GetFactAddressPosition 123
GetActualDefglobal 102 GetFactDuplication 89
GetAgendaChanged 164 GetFactIndex 89
GetAssertArgument 53 , 55, 221, 222 GetFactListChanged 89
GetBoundVariable 59 GetFactPPForm 89
GetcCLIPS 30 , 67 GetFastLoad 31
GetClassMessageHandlers 322 GetFastSave 31
GetClassName 326 getfield 135
GetClassSlots 322 GetfieldReplace 141
GetClassSubclasses 322 , 325, 327 GetFieldSysFunction 174
GetClassSuperclasses 322 GetFileName 80
GetCommandString 66 GetFloatTable 21
GetCompilationsWatch 71 GetFunctionList 45
GetConserveMemory 11 GetGenericBind 291, 292
GetConstructName 79 GetGenericWildargs 290, 292
GetConstructNameAndComment 54 , 98,

200, 225
GetGlobalsChanged 103
GetHaltExecution 59

GetDefclassName 322 GetIncrementalReset 158
GetDefclassPPForm 322 GetIndexedDefglobal 103
GetDeffactsName 96 GetIndexedDefrule 197
GetDeffactsPPForm 96 GetInstanceAddressCmd 348
GetDeffunctionName 284 GetInstanceClass 348
GetDeffunctionPPForm 284 GetInstanceClassCmd 293 , 348
GetDefgenericName 292 GetInstanceName 348
GetDefgenericPPForm 292 GetInstanceNameCmd 349
GetDefglobalName 103 GetInstancePPForm 348 , 354
GetDefglobalPPForm 103 GetInstancesChanged 357, 362

432 Index

GetIntegerTable 22 GetRuleFiring 165
GetJoinLogic 123 GetRulesWatch 197
GetLHSSlots 230 GetSalienceEvaluation 165
GetLogicalName 81 GetSingleLHSSlot 230
GetMultiSlotPosition 218 GetSingleLHSSlots 231
GetNextActivation 164 GetSlotAssertValues 221
GetNextDefclass 322 GetSlotFacets 322
GetNextDeffacts 96 GetSlotSources 322
GetNextDeffunction 284 GetStrategy 165
GetNextDefgeneric 291 GetSymbolTable 22
GetNextDefglobal 102, 104 GetToken 37
GetNextDefinstances 414 GetTraversalID 316 , 397, 400
GetNextDefmessageHandler 372 getvar 135
GetNextDefmethod 292 GetVariableDefinition 107 , 108
GetNextDefrule 197 GetVariableInformation 125
GetNextDeftemplate 211 GetVariables 133
GetNextFact 89 GetvarReplace 142
GetNextInstance 348 GetWatchItem 81
GetNextInstanceInClass 348 get_bind 261
GetNextLogicalRetraction 191, 192 get_end 261
GetNextSymbolMatch 22 get_field 136, 261
GetNode 118 get_struct 11
GetNodeType 123 get_var 181
GetNotJoinExpression 124 get_var_struct 12
GetNthWatchName 81 GlobalLHSBinds 181 , 193
GetNthWatchValue 81 GlobalMax 35
GetNumberOfActivations 164 GlobalPos 35
GetNumberOfDefglobals 104 GlobalRHSBinds 181
GetNumberOfFacts 89 GlobalRtnUnknown 104 , 106
GetNumericArgument 184 GlobalSalience 111 , 114
GetParsedBindNames 49 GlobalString 35
GetPatternExpression 124 gm1 12
GetPPBuffer 37 gm2 12
GetPPBufferStatus 37 gm3 12
GetPrimaryJoinExpression 124 GrabGenericWildargs 295
GetPrintWhileLoading 71 GrabWildargs 286
GetQueryInstance 399 , 403, 407 grad-deg 273
GetQueryInstanceSlot 399 , 403, 407, 408 GroupActions 55
GetRelationForPattern 125 GroupHandlerWildargs 373
GetResetGlobals 104 GroupPatterns 114
GetResetGlobalsCommand 104 GSMP_LEN 380
GetRHSPattern 54 GSM_PREFIX 380
GetRuleDeletions 197 halt 205

CLIPS Architecture Manual 433

HaltExecution 58 , 59, 60 IndentationDepth 36 , 38
HaltRules 161 INDIRECT 334
HandlerDeleteError 386 INHERIT_BIT 319
HandlerDeleteSlot 360, 373 init-slots 362 , 377
HandlerGetBind 370, 373 , 387 InitCImage 184, 254, 259
HandlerGetSlot 374 InitFactCommands 93
HandlerInsertSlot 360, 374 InitGenModule 142
HandlerPutSlot 362, 374 initialize-instance 345, 346, 351 , 354,

362, 363HandlerReplaceSlot 374
HandlerRtnUnknown 370, 374 InitializeAtomTables 23
HandlersExecuting 386 InitializeBlockMemory 16
HandlerType 387 InitializeClasses 336
HandlerWildargs 370, 375 InitializeCLIPS 6
HANDLER_DECL 319 InitializeConstructs 71
HashClass 333, 341 InitializeDefaultRouters 31
HashFact 90 InitializeDeffacts 97
HashFloat 22 InitializeDeffunctions 284
HashInstance 357, 366 InitializeDefglobal 104
HashInteger 22 InitializeDefinstances 415
HashSymbol 23 InitializeDefrules 198
HashTablesToCode 257 InitializeDeftemplateHashTable 214
HasSuperclass 322 InitializeDeftemplates 211
HeaderFP 253 InitializeEngine 165 , 198
help 275 InitializeFactHashTable 92
help-path 275 InitializeFacts 90
HelpFunctionDefinitions 275 InitializeFunctionHashTable 48
HIGHER_PRECEDENCE 301 InitializeIgnoredConstructs 71
hndquals 380 InitializeInstance 351, 361 , 363
IDENTICAL 301 InitializeInstanceTable 364
IdenticalExpression 45 InitializeNonportableFeatures 6
if 261 InitializeSpecialForms 49
IfParse 51 INIT_STRING 370
IgnoreCompletionErrors 35 INIT_SYMBOL 370
ImageID 253 inscom.c 4, 345
IncrementalReset 157 , 158, 200 INSERT 358 , 360
IncrementalResetFlag 157 InsertHandlerHeader 376
IncrementFactCount 90 InsertSlot 336
IncrementFloatCount 23 InsertSlotOverrides 366
IncrementIndentDepth 38 insfun.c 4, 357
IncrementInstanceCount 362 insfun.h 358
IncrementIntegerCount 23 insquery.c 4, 395
IncrementPseudoFactIndex 183 insquery.h 401 , 402
IncrementSymbolCount 23 InstallClass 341 , 377

434 Index

InstallDeftemplate 208, 214 IsDefinstancesDeletable 414
InstallExpression 47, 214 IsDefmessageHandlerDeletable 372
InstallFunctionList 46 IsDefmethodDeletable 292
InstallInstance 367 IsDefruleDeletable 198
instance 345 , 357 IsDeftemplateDeletable 211
instance-address 348 IsInstance 349
instance-addressp 349 IsInstanceAddress 349
instance-existp 348 IsInstanceName 349
instance-name 349 IsMethodApplicable 306, 308
instance-name-to-symbol 349 IsQueryFunction 403
instance-namep 349 IsSlotBound 350 , 353
instance-set 395 IsSlotInitable 350 , 353

distributed action 395 IsSlotWritable 350 , 353
query 395 IsSubclass 322 , 324

Instance Template Codes 334 IsSuperclass 323 , 324
InstanceGarbageList 359 IsSystemClassName 337
InstanceList 346, 357 JoinArray 203
InstanceListBottom 359 JoinHandlerLinks 390, 391 , 392
InstanceLocationInfo 367 JoinNetErrorMessage 159
InstanceNameToSymbol 349 LastDeffacts 95
instancep 349 LastDefrule 195 , 199
instances 316, 347 LastDeftemplate 207
InstanceSizeHeuristic 367 LastFact 86
InstancesPurge 337 length 267
InstanceTable 346, 360 lexemep 263
INSTANCE_SLOT_REF 398 lgcldpnd.c 2, 187
INSTANCE_TABLE_HASH_SIZE 357 LHSError 112
integer 267 LHSPattern 114
IntegerArray 244 list-defclasses 321
integerp 263 list-deffacts 97
IntegersToCode 258 list-deffunctions 282
IntegerTable 18, 19, 20, 21, 22, 23, 24, 25,

26, 39, 240, 241, 249, 256, 257, 258,
259

list-defgenerics 291
list-definstances 414
list-defmessage-handlers 372

intrfile.c 277 list-defmethods 291
IOFunctionDefinitions 265 list-deftemplates 207 , 212
IsClassAbstract 322 list-defglobals 105
IsClassAbstractCmd 322 list-deftemplates 213
IsClassBeingUsed 337 ListAgenda 165
IsDefclassDeletable 322 ListBreakpoints 165
IsDeffactsDeletable 97 ListDefclasses 322
IsDeffunctionDeletable 284 ListDeffacts 97
IsDefgenericDeletable 292 ListDeffactsCommand 97

CLIPS Architecture Manual 435

ListDeffunctions 284 LoadConstructs 70, 71
ListDefgenerics 292 LoadConstructsFromLogicalName 72
ListDefglobals 105 LoadInstances 348 , 353, 358
ListDefglobalsCommand 105 LoadInstancesCommand 350
ListDefinstances 414 log 273
ListDefmessageHandlers 372 , 385, 388 log10 273
ListDefmethods 292 logical CE 109, 113, 114, 116, 117, 187
ListDeftemplates 211 , 212 LogicalAnalysis 131
ListDeftemplatesCommand 212 LongIntegerToString 81
ListDependencies 192 LOOKUP_HANDLER_ADDRESS 380
ListDependents 192 LOOKUP_HANDLER_INDEX 380
ListFacts 90 lowcase 271
ListInstances 348 , 354 LOWER_PRECEDENCE 301
ListMatches 198 main 421
ListOfBinaryItems 238 , 240, 241 main.c 4, 421
ListOfCleanupFunction 77 MaintainGarbageInstances 358 , 409, 411
ListOfCleanupFunctions 77 , 82, 83 make-instance 318, 319, 345, 346, 351 ,

353, 354, 362, 364 , 413, 415ListOfClearFunctions 69 , 70, 71, 72
ListOfCodeGeneratorItems 253 , 254 MakeInstance 351, 360, 361 , 364
ListOfConstructs 69 , 70, 72, 74 malloc 10
ListOfDeffacts 95, 96, 97 MarkBuckets 240 , 241, 258 , 259
ListOfDefglobals 101 , 102, 104, 105, 107 MarkNeededFlags 241
ListOfDefrules 195, 196, 197, 199 MarkNeededItems 239
ListOfDeftemplates 207, 208 , 209, 211,

212, 213
MarkNetworkForIncrementalReset 200
MarkRuleNetwork 183

ListOfFileRouters 28 match.c 2, 171
ListOfFunctions 42 , 45, 46, 47, 248 matches 205
ListOfParsedBindNames 49 , 50 math.c 3, 273
ListOfPeriodicFunctions 77 , 83 MathFunctionDefinitions 273
ListOfResetFunctions 69 , 70, 73 max 51, 267
ListOfRouters 28 , 29, 30 MaximumCharacters 64
ListOfRunFunctions 162 , 163, 166 MaxIndices 254
ListOfSaveFunctions 70 , 71, 73 MAX_TRAVERSALS 397 , 398, 400
ListOfSegments 86 , 87, 89 mem-requests 267
ListOfStringRouters 28 mem-used 267
ListOfWatchItems 77 , 78, 81 member 269
ListToPacked 46 memory.c 1, 7
ListUserFunctions 258 MemoryAmount 8
LiteralRestrictionParse 114 MemoryCalls 8
load 70, 277 MemoryRequests 12
load-facts 93 MemoryStatusFunction 64 , 66
load-instances 350 MemoryTable 7, 12, 14
load-facts 219 MemoryUsed 13

436 Index

MergePartialMatches 183 Multifield Slot Function Codes 358
MergeSlots 329, 334 , 341 MultifieldFunctionDefinitions 269
message 369 , 379 multifieldp 263

delete 352, 360, 370, 376 , 415 MultifieldSlotDelete 350 , 353, 360
init 361 , 362 , 370, 376 , 384 MultifieldSlotInsert 350 , 353, 360
print 376 MultifieldSlotReplace 351 , 353, 360
put 361 , 366 MultiIntoSingleFieldSlotError 219

message-handler 261, 369 , 379 multiple inheritance 329 , 339, 401
types MultiplyDefinedLHSSlots 230, 231

after 380 , 388 , 390 MultiplyDefinedSlots 226
around 380 , 382, 390 , 392 multivar.c 3, 269
before 380 , 388 , 390 MULTI_CLEAR 358 , 362
primary 380 , 382, 388 , 389, 390 ,
391

MULTI_SET 358 , 362
mv-append 269

Message-Handler Lookup Codes 380 mv-delete 269
message-handler precedence 381 mv-replace 269
Message-Handler Type Codes 380 mv-slot-delete 350
message dispatch 337, 379 , 384 mv-slot-insert 351
message parameter array 370, 373, 374,

375, 378, 379 , 389, 392
mv-slot-replace 351
mv-append 2

Message Trace Strings 381 mv-subseq 269
method 261, 290 , 299 NegEntryRetract 180
method parameter array 290 , 297, 300 ,

304, 307
neq 135, 136, 263
neqfield 135, 136

method precedence 299 , 301, 307 neqvar 135
Method Precedence Codes 301 neq_field 137, 261
MethodAlterError 305 neq_vars 158
MethodsExecuting 305 NetworkPointer 145
min 51, 267 NetworkRetract 179
mod 273 NewCFile 255
ModAndDupParse 218, 219, 221 NewClass 337
modify 3, 54, 201, 207 , 212, 213, 214,

217, 219, 220, 221
NewGeneric 308
NewHandler 387

ModifyCommand 212 NewInstance 367
ModifyParse 219 NewPseudoFactPartialMatch 183
ModifySlotsMultiplyDefined 221 NewSlot 337
MoveActivationToTop 165 NewSystemHandler 376
msgcom.c 4, 369 next-handlerp 387
msgcom.h 370 next-methodp 305
msgfun.c 4, 379 NextFactID 92
msgfun.h 380 NextFactIndex 86
MultiArgNumericParse 51 NextHandlerAvailable 387
MultiArgParse 51 NextInCore 301 , 302, 381 , 382, 388

CLIPS Architecture Manual 437

NextMethodP 305 OverrideSlotProtection 358
NoInstanceError 364 PackExpression 46 , 47
nonconstant 261 PackRestrictionTypes 295
NonexistantError 60 PackSlots 338
nop 137, 261 ParseAllowedValuesAttribute 226
not 52, 136, 137, 263 ParseAssertSlotValues 221
not CE 109, 114, 115, 117, 127, 149, 177 ParseAssertTemplate 55, 219 , 222
notconstant 135, 137 ParseAtomOrExpression 46 , 108
NotParse 52 ParseConstantArguments 46
NotPatternParse 115 ParseConstruct 72
nth 269 ParsedBindNamesEmpty 50
NumberOfActivations 162 , 164 ParseDefault 226
NumberOfDeffacts 95 ParseDefclass 317, 325, 326 , 327, 334,

335, 336, 337, 338NumberOfDefglobals 101 , 104
NumberOfDefrules 203 ParseDefclassName 326
NumberOfDeftemplates 208 ParseDeffacts 98
NumberOfExpressions 245 , 248 ParseDeffunction 284, 286, 287
NumberOfFacts 86 , 88, 89 ParseDefgeneric 295 , 296, 301
NumberOfJoins 203 ParseDefglobal 108
NumberOfPatternPointers 203 ParseDefinstances 415
NumberOfPatterns 203 ParseDefinstancesName 415
NumberOfTemplateSlots 208 ParseDefmessageHandler 341, 371, 376,

377 , 378, 385numberp 263
objbin.c 4, 419 ParseDefmethod 296 , 297, 301, 302, 303,

304objcmp.c 4, 417
object.h 397 , 399 ParseDefrule 200
ObjectParseToken 319 , 347 ParseDeftemplate 225
ObjectsRunTimeInitialize 323 ParseHandlerParameters 377
ObjectSystemPurge 338 , 340 ParseIgnoredConstruct 72
OBJECT_CLASS_STRING 333 ParseInitializeInstance 347, 351 , 354 ,

363, 364oddp 263
OldGenericBusySave 301 , 308, 309 ParseMethodName 296
open 75, 265 ParseMethodNameAndIndex 296
OpenErrorMessage 82 ParseParameters 286 , 294, 296
OpenFile 29, 31 ParseQueryAction 396, 404 , 405, 406,

407OpenStringDestination 29, 31
OpenStringSource 29, 31 ParseQueryActionExpression 405
OpenTextSource 32 ParseQueryNoAction 396, 405 , 406, 407
options 267 ParseQueryRestrictions 405, 406 , 407,

408or 51, 137, 158, 263
or CE 109, 113, 114, 117 ParseQueryTestExpression 406
OutOfMemoryFunction 9 ParseRangeAttribute 226, 227
override-next-handler 381 , 387 ParseRestriction 295, 296 , 298

438 Index

ParseRuleLHS 112 , 200 PPBackupTwice 36
ParseRuleRHS 112 , 200 PPBufferMax 36
ParseSimpleInstance 347, 353 PPBufferPos 36
ParseSlot 227 , 228, 326 PPBufferStatus 36 , 38
ParseSlotLabel 222 PPCRAndIndent 38
ParseSlotOverrides 354 PPDefclass 323 , 324, 326
ParseSlotValue 326 ppdeffacts 97
ParseSuperclasses 327 PpdeffactsCommand 97
ParseTypeAttribute 226, 227 ppdeffunction 282
ParsingTopLevelCommand 64 , 67 PPDefgeneric 292 , 293
parsutil.c 2, 53 ppdefglobal 105
PatPtrArray 203 PpdefglobalCommand 105
pattern CE 109, 113, 114, 149, 177 PPDefinstances 414
PatternArray 203, 204 ppdefmessage-handler 375
PatternHasTemplate 125 PPDefmessageHandler 375
PatternMatch 174 PPDefmethod 293
PatternNetErrorMessage 174 ppdefrule 79, 205
PatternNetworkPointer 144 , 145 ppdeftemplate 207 , 212 , 213
PCALL 279 PPDeftemplateCommand 212
PERFORM 381 PPDrive 157, 159
PerformImplicitHandler 382, 391 PPInstance 352 , 354, 377
PerformMessage 383, 384, 388 , 389,

391
PredicateFunctionDefinitions 263
PreserveEscapedCharacters 77

PeriodicCleanup 77, 82 , 361 PrettyPrintBuffer 35, 36 , 37, 38
pi 273 PREVIEW 381
PlaceActivation 163, 168 preview-generic 306
PlaceBreadthActivation 168 preview-send 375
PlaceComplexityActivation 168 PreviewGeneric 305 , 307
PlaceDepthActivation 169 PreviewMessage 372 , 383, 385, 386
PlaceLEXActivation 169 PreviewMessageCmd 375
PlaceMEAActivation 169 PrimeJoin 184 , 200
PlacePattern 146 PrimitiveClassMap 332, 333
PlaceRandomActivation 169 print-region 275
PlaceSimplicityActivation 169 PrintAbbreviatedHandlerRemoval 387
PNLDrive 157, 158 PrintActivation 165
PNRDrive 158, 159 PrintAtom 82
pointer 261 PrintClassBrowse 327
pointerp 263 PrintCLIPS 32
PoolSize 13 PrintCRSVActivation 166
PopQueryCore 407 PrintCString 258
PosEntryRetract 179 PrintCurrentMessage 387 , 388
PPBackup 36, 38 PrintDataObject 59
PPBackupOnce 36 PrintDeffunctionReference 255

CLIPS Architecture Manual 439

PrintExpression 47 put 374
PrintFact 90 PutClassInTable 338
PrintFactWithIdentifier 90 PutSlotValue 358 , 364
PrintFloat 82 QFindDefglobal 105
PrintFloatReference 252, 255 QFindDeftemplate 212
PrintFunctionReference 255 QGetDefglobalValue 105
PrintGenericFunctionReference 256 QSetDefglobalValue 105
PrintHandler 388 QSetListOfDeftemplates 212
PrintInChunks 82 QuashInstance 365 , 367
PrintInstance 354 QueryCore 398 , 403, 407
PrintIntegerReference 252, 256 QueryCoreStack 398 , 403, 407
PrintLongInteger 83 QueryDoForAllInstances 400 , 408
PrintMethod 306 QueryDoForInstance 400 , 410
PrintNoHandlerError 392 QueryFindAllInstances 400 , 402, 408
printout 265 QueryFindInstance 401 , 410
PrintPartialMatch 184 QueryRouter 33
PrintPartialOrderLoop 331, 342 QueryRouters 32
PrintPreviewHandler 388, 392 QUERY_DELIMITER_STRING 397
PrintPrompt 66 QUERY_DELIMITER_SYMBOL 397, 402
PrintSymbolReference 252, 256 rad-deg 273
PrintTally 83 random 267
PrintTemplateFact 212 read 265
PrintWhileLoading 70 , 71, 74 readline 265
PRINT_STRING 371 ReadNeededFloats 249
progn 53, 55, 233, 261 , 279, 299, 369 ReadNeededFunctions 249
PropagateReturnValue 59 ReadNeededIntegers 249
PropogateReturnValue 282, 305, 361, 392 ReadNeededSymbols 250
PseudoFactIndex 181 , 183, 185 ReadUntilClosingParen 55
PSMP_LEN 380 RecordPartialOrder 342
PSM_PREFIX 380 refresh 205
PTR_AND 136 refresh-agenda 205
PTR_CONSTANT 136 RefreshAgenda 166
PTR_EQ 136 RefreshBooleanSymbols 24
PTR_EQ_FIELD 136 RefreshDefrule 198
PTR_GET_FIELD 136 RefreshExpressions 250
PTR_NEQ 136 ReinitializeClasses 338
PTR_NEQ_FIELD 137 release-mem 267
PTR_NOP 137 ReleaseMemory 13
PTR_NOT 137 ReleaseTraversalID 316 , 397, 401
PTR_NOTCONSTANT 137 RememberJoinsForRule 201
PTR_OR 137 remove-break 205
PurgeUserClassStuff 327 RemoveActivation 166
PushQueryCore 407 RemoveAllActivations 166

440 Index

RemoveAllBreakpoints 166 ReplaceRHSVariable 201
RemoveAllDeffacts 97 ReplaceSlotReference 399, 408
RemoveAllFacts 90 RequestChunk 10, 13 , 16
RemoveBreakpoint 166 RerouteStdin 6
RemoveCleanupFunction 83 , 84 reset 92, 97, 102, 104, 198, 261 , 415
RemoveClearFunction 72 ResetCLIPS 73
RemoveConstruct 72 ResetCompositeSlots 342
RemoveCPFunction 84 ResetDeffacts 98
RemoveDeffunction 287 ResetDefglobals 106
RemoveDefinstances 415 ResetDefrules 201
RemoveEphemeralAtoms 24 ResetDeployedRuleImage 184 , 185
RemoveEphemeralFloats 24, 25 ResetFacts 92
RemoveEphemeralIntegers 24, 25 ResetGlobals 102 , 104, 106
RemoveEphemeralSymbols 24, 26 ResetNotedJoin 185
RemoveFactDependencies 192 ResetNotedPatterns 185
RemoveFloat 26 RestoreAllWatchItems 83
RemoveFunctionParser 47 RestoreBusyCount 308
RemoveGeneric 297 RestrictionParse 112 , 231
RemoveGenericMethod 297 RestrictionsCompare 308 , 309
RemoveHashDeftemplate 215 reteutil.c 2, 181
RemoveHashedFact 90 retract 93
RemoveInteger 26 retract.c 2, 177
RemoveIntranetworkLink 146 RetractFact 91 , 191
RemoveOldFacts 91 RetractParse 52
RemovePeriodicFunction 83 , 84 return 261 , 279, 282, 299, 304, 369, 391
RemovePMDependencies 192 ReturnChunk 10, 13
RemoveResetFunction 73 ReturnContext 261
RemoveRuleNetwork 200 ReturnDefrule 198
RemoveRunFunction 166 ReturnElements 91
RemoveSaveFunction 73 ReturnExpression 47
RemoveSymbol 26 ReturnFlag 261 , 282 , 302 , 305 , 382 ,

388 , 392reorder.c 2, 117
ReorderAgenda 166 , 167 ReturnMarkers 180
ReorderAssertSlotValues 222 ReturnNodes 119
ReorderLHSSlotValues 230, 231 ReturnPackedExpression 47
ReorderPatterns 118 ReturnPartialMatch 179
REPLACE 358 , 360 ReturnSAPs 223
ReplaceExpressionVariables 201 ReturnSlots 213
ReplaceGlobalVariable 106 , 201 ReturnSLPs 231
ReplaceHandlerParameters 376, 378 ReturnSymbolMatches 24
ReplaceInstanceVariables 399, 403, 407 ,

408
ReturnValues 59
ReuseJoin 146

ReplaceParameters 287 , 295, 297 ReverseOR 119

CLIPS Architecture Manual 441

rm 14 ScanString 39
rm3 14 ScanSymbol 39
round 273 SDDCommand 213
RouteCommand 66 SearchParsedBindNames 50
router.c 1, 27 sec 273
RtnGenericUnknown 290, 293 sech 273
rtn_struct 14 SecondaryFunctionDefinitions 267
rtn_var_struct 14 seed 267
RuleAnalysis 131 SegmentDeinstall 88, 91
RuleBodyParse 115 SegmentInstall 88, 91
rulecom.c 3, 205 SELF_LEN 371
RuleComplexity 125 SELF_SLOT_REF 371
RuleDeletions 197, 199 SELF_STRING 371
RuleFiring 162 , 165 SELF_SYMBOL 371
ruleprsr.c 2, 109 send 375, 379 , 384
rules 205 SequenceRestrictionParse 115
run 162, 205 set-dynamic-deftemplate-checking 214
RunCLIPS 167 set-salience-evaluation 205
SalienceEvaluation 162 , 165, 167 set-auto-float-dividend 263
SalienceExpression 111, 114 set-break 205
SalienceInformationError 199 set-dynamic-deftemplate-checking 207 ,

213save 73, 97, 104, 198, 207, 211, 277 ,
287, 297, 327, 416 set-fact-duplication 93

save-instances 352 set-incremental-reset 205
save-facts 76, 93 set-reset-globals 104, 107
SaveAllWatchItems 83 set-strategy 205
SaveBusyCount 309 SetActivationSalience 167
SaveConstructs 73 SetAgendaChanged 167
SaveDefclasses 327 SetAllWatchItems 83
SaveDeffacts 98 SetBeforeClearFunction 73
SaveDeffunctionHeaders 287 SetBeforeResetFunction 73
SaveDeffunctions 287 setbit 398 , 401
SaveDefgenerics 297 SetClassList 338
SaveDefglobals 108 SetCommandString 66
SaveDefinstances 416 SetCompilationsWatch 73
SaveDefmethods 297 SetConserveMemory 14
SaveDefrules 202 SetDefglobalValue 105, 106
SaveDeftemplates 215 SetDefinstancesList 414
SaveInstances 348 SetDynamicDeftemplateChecking 213
SaveInstancesCommand 352 SetEvaluationError 60
SavePPBuffer 38 SetEventFunction 66
scanner.c 1, 35 SetExecutingConstruct 74
ScanNumber 39 SetFactDuplication 91

442 Index

SetFactID 92 SetVariableInformation 125 , 132
SetFactListChanged 92 SetWatchItem 83
SetFastLoad 32 show-breaks 205
SetFastSave 32 signal 5
SetFloatTable 24 SimplePatternParse 115
SetFunctionList 47 sin 273
setgen 267 sinh 273
SetGenericList 306 SizeOfDefglobalArray 102
SetGlobalsChanged 106 SizeOfglobalArray 107
SetHaltExecution 60 slot-accessor 18, 371 , 380 , 382, 390,

391SetIncrementalReset 158
SetIndentDepth 38 Slot-Accessor Prefix Strings 380
SetInstancesChanged 357, 362 slot-boundp 350
SetIntegerTable 24 slot-existp 348
SetListOfDeffacts 97 slot-facets 324
SetListOfDeffunctions 284 slot-initablep 350
SetListOfDefglobals 106 slot-override 351 , 354, 361 , 362 , 366
SetListOfDefrules 199 slot-sources 324
SetListOfDeftemplates 213 slot-writablep 350
SetMemoryStatusFunction 66 Slot Value Expression Evaluation Codes

358SetMultifieldErrorValue 60
SetNetworkPointer 145 Slot Value Set Codes 358
SetOutOfMemoryFunction 15 SlotArray 208
SetParsedBindNames 50 SlotDeclarations 225, 227
SetPPBufferStatus 38 SlotExistError 365
SetPrintWhileLoading 74 SlotFacetsCmd 323 , 324
SetPseudoFactIndex 185 SlotSourcesCmd 324
SetResetGlobals 106 SlotValueExpression 365
SetResetGlobalsCommand 107 SLOT_COMPOSITE_RLN 320
SetRuleDeletions 199 SLOT_DEF_DYN_RLN 319
SetRuleInformation 125 , 132 SLOT_DEF_RLN 319
SetSalienceEvaluation 167 SLOT_EMPTY 358 , 364
SetStrategy 167 SLOT_ERROR 358 , 364
SetSymbolTable 24 SLOT_EXCLUSIVE_RLN 320
SetTraversalID 316 , 397, 401 SLOT_FILLED 358 , 364
SetupClasses 323 SLOT_INH_RLN 319
SetupDefinstances 414 SLOT_INIT_RLN 320
SetupGenericFunctions 293 SLOT_LOCAL_RLN 320
SetUpInitFile 258 SLOT_MULT_RLN 320
SetupInstances 352 , 364 SLOT_NOINH_RLN 319
SetupMessageHandlers 371, 375 SLOT_RDONLY_RLN 319
SetupObjectSystem 323 , 352, 401, 414 SLOT_RDWRT_RLN 319
SetupQuery 401 SLOT_RLN 319

CLIPS Architecture Manual 443

SLOT_SGL_RLN 320 syspred.c 3, 263
SLOT_SHARE_RLN 320 sysprime.c 3, 261
SortBindings 170 syssecnd.c 3, 267
spclform.c 1, 41, 49 system 267
sprintf 80 SystemFunctionDefinitions 6
sqrt 273 SYSTEM_NO 300
StaleInstanceAddress 365 SYSTEM_YES 300
STORAGE_BIT 319 TabulateInstances 354
StoreSubclasses 327 TagLHSLogicalNodes 115
StoreValuesInMultifield 368 TagRuleNetwork 185
str-assert 267 tan 273
str-cat 271 tanh 273
str-compare 271 TemplateMultifieldSlotReplace 215
str-explode 269 TempMemoryPtr 8 , 11, 12, 14
str-implode 269 TempSize 8 , 14
str-index 271 test CE 109, 114, 116, 130, 177
str-length 271 testbit 398 , 402
Strategy 162 , 165, 167 TestEntireChain 396, 408 , 409
StringBuffer 40 TestEntireClass 396, 402, 408 , 409
StringFunctionDefinitions 271 TestForFirstInChain 396, 410 , 411
stringp 263 TestForFirstInstanceInClass 396, 410 ,

411StringPrintForm 38
strings.c 3, 271 TestPattern 116
StringToFact 87, 92 TestTraversalID 316 , 397, 401
StringToMultifield 92 textpro.c 3, 275
sub-string 271 TheLogicalJoin 161 , 187, 191, 193
subclassp 323 time 267
subset 269 TopLevelCommand 66
superclassp 323 TopMemoryBlock 9
SUPERCLASS_RLN 319 TopNegJoinRetract 180
sym-cat 271 TopOfCore 301 , 307, 381 , 391
symbol-to-instance-name 352 toss 275
symbol.c 1, 17 , 75 TraceDeffunction 287
SymbolArray 244 TraceErrorToPattern 174, 175
symbolp 263 TraceErrorToRule 174 , 175
SymbolsToCode 259 TraceGeneric 309
SymbolTable 17, 18, 19, 20, 21, 22, 23,

24, 25, 26, 35, 39, 40, 214, 240, 241,
250, 256, 257, 258, 259

TraceHandler 388, 392
TraceMessage 393
TraceMethod 309

SymbolToInstanceName 352 TRAVERSAL_BYTES 315 , 337, 397
SyntaxErrorMessage 84 TrueSymbol 18, 20
sysdep.c 1, 5 trunc 267
sysio.c 3, 265 type 293 , 348

444 Index

TypeListCompare 309 WatchGlobals 102
TypeOf 293 WatchHandlers 380
undefclass 321 WatchInstances 359
undeffacts 97, 98 WatchMessages 380
UndeffactsCommand 98 WatchMethods 300
undeffunction 282 WatchRules 195 , 197
undefgeneric 291 WatchSlots 359
undefinstances 414 WatchStatistics 162
undefmessage-handler 372 WCLIPS 27
undefmethod 291 WDIALOG 27
undefrule 79, 205 WDISPLAY 27 , 90
undeftemplate 207 , 213 WERROR 27
UndeftemplateCommand 213 while 261
UngetcCLIPS 33 WhileParse 52
unmake-instance 352 wildcard parameter 279 , 290 , 369
UnmakeInstance 352 WildDeleteHandler 372 , 383
UnmarkBuckets 241 , 259 WithinInit 359
UnrecognizedRouterMessage 33 WriteBinaryFooter 241
unwatch 261 WriteBinaryHeader 241
upcase 271 WriteNeededFloats 241
UpdateMemoryRequests 15 WriteNeededFunctions 242
UpdateMemoryUsed 15 WriteNeededIntegers 241
UpdateModifyDuplicate 201, 218, 219,

220
WriteNeededSymbols 242
WrongTypeError 61

UserFunctions 421 WTRACE 27
USER_CLASS_STRING 333
utility.c 2, 75
ValidConstruct 74
ValidInstanceAddress 348
ValidSlotValue 366
ValidType 298
ValueDeinstall 60
ValueInstall 60
variable.c 2, 121
VariableAnalysis 131
VersionString 65
watch 2, 75, 77, 261 , 281, 300, 359, 364,

380
WatchActivations 162
WatchCompilations 70, 71, 73
WatchDeffunctions 281
WatchFacts 86
WatchGenerics 300

CLIPS Architecture Manual 445

